Description: The norm of an extension of RR is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rrextnlm.z | |- Z = ( ZMod ` R ) |
|
| Assertion | rrextnlm | |- ( R e. RRExt -> Z e. NrmMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextnlm.z | |- Z = ( ZMod ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
|
| 4 | 2 3 1 | isrrext | |- ( R e. RRExt <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ) ) |
| 5 | 4 | simp2bi | |- ( R e. RRExt -> ( Z e. NrmMod /\ ( chr ` R ) = 0 ) ) |
| 6 | 5 | simpld | |- ( R e. RRExt -> Z e. NrmMod ) |