Metamath Proof Explorer


Theorem rrextnlm

Description: The norm of an extension of RR is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypothesis rrextnlm.z 𝑍 = ( ℤMod ‘ 𝑅 )
Assertion rrextnlm ( 𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod )

Proof

Step Hyp Ref Expression
1 rrextnlm.z 𝑍 = ( ℤMod ‘ 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) )
4 2 3 1 isrrext ( 𝑅 ∈ ℝExt ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ) )
5 4 simp2bi ( 𝑅 ∈ ℝExt → ( 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) )
6 5 simpld ( 𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod )