Metamath Proof Explorer


Theorem rrextnlm

Description: The norm of an extension of RR is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypothesis rrextnlm.z Z = ℤMod R
Assertion rrextnlm R ℝExt Z NrmMod

Proof

Step Hyp Ref Expression
1 rrextnlm.z Z = ℤMod R
2 eqid Base R = Base R
3 eqid dist R Base R × Base R = dist R Base R × Base R
4 2 3 1 isrrext R ℝExt R NrmRing R DivRing Z NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif dist R Base R × Base R
5 4 simp2bi R ℝExt Z NrmMod chr R = 0
6 5 simpld R ℝExt Z NrmMod