Metamath Proof Explorer


Theorem rrextchr

Description: The ring characteristic of an extension of RR is zero. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rrextchr RℝExtchrR=0

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid distRBaseR×BaseR=distRBaseR×BaseR
3 eqid ℤModR=ℤModR
4 1 2 3 isrrext RℝExtRNrmRingRDivRingℤModRNrmModchrR=0RCUnifSpUnifStR=metUnifdistRBaseR×BaseR
5 4 simp2bi RℝExtℤModRNrmModchrR=0
6 5 simprd RℝExtchrR=0