Metamath Proof Explorer


Definition df-rrext

Description: Define the class of extensions of RR . This is a shorthand for listing the necessary conditions for a structure to admit a canonical embedding of RR into it. Interestingly, this is not coming from a mathematical reference, but was from the necessary conditions to build the embedding at each step ( ZZ , QQ and RR ). It would be interesting see if this is formally treated in the literature. See isrrext for a better readable version. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion df-rrext ℝExt=rNrmRingDivRing|ℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×Baser

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrext classℝExt
1 vr setvarr
2 cnrg classNrmRing
3 cdr classDivRing
4 2 3 cin classNrmRingDivRing
5 czlm classℤMod
6 1 cv setvarr
7 6 5 cfv classℤModr
8 cnlm classNrmMod
9 7 8 wcel wffℤModrNrmMod
10 cchr classchr
11 6 10 cfv classchrr
12 cc0 class0
13 11 12 wceq wffchrr=0
14 9 13 wa wffℤModrNrmModchrr=0
15 ccusp classCUnifSp
16 6 15 wcel wffrCUnifSp
17 cuss classUnifSt
18 6 17 cfv classUnifStr
19 cmetu classmetUnif
20 cds classdist
21 6 20 cfv classdistr
22 cbs classBase
23 6 22 cfv classBaser
24 23 23 cxp classBaser×Baser
25 21 24 cres classdistrBaser×Baser
26 25 19 cfv classmetUnifdistrBaser×Baser
27 18 26 wceq wffUnifStr=metUnifdistrBaser×Baser
28 16 27 wa wffrCUnifSpUnifStr=metUnifdistrBaser×Baser
29 14 28 wa wffℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×Baser
30 29 1 4 crab classrNrmRingDivRing|ℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×Baser
31 0 30 wceq wffℝExt=rNrmRingDivRing|ℤModrNrmModchrr=0rCUnifSpUnifStr=metUnifdistrBaser×Baser