Metamath Proof Explorer


Theorem rrextcusp

Description: An extension of RR is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rrextcusp R ℝExt R CUnifSp

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid dist R Base R × Base R = dist R Base R × Base R
3 eqid ℤMod R = ℤMod R
4 1 2 3 isrrext R ℝExt R NrmRing R DivRing ℤMod R NrmMod chr R = 0 R CUnifSp UnifSt R = metUnif dist R Base R × Base R
5 4 simp3bi R ℝExt R CUnifSp UnifSt R = metUnif dist R Base R × Base R
6 5 simpld R ℝExt R CUnifSp