Metamath Proof Explorer


Theorem rrexttps

Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Assertion rrexttps RℝExtRTopSp

Proof

Step Hyp Ref Expression
1 rrextnrg RℝExtRNrmRing
2 nrgngp RNrmRingRNrmGrp
3 ngpxms RNrmGrpR∞MetSp
4 1 2 3 3syl RℝExtR∞MetSp
5 xmstps R∞MetSpRTopSp
6 4 5 syl RℝExtRTopSp