Metamath Proof Explorer


Theorem rrexttps

Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Assertion rrexttps R ℝExt R TopSp

Proof

Step Hyp Ref Expression
1 rrextnrg R ℝExt R NrmRing
2 nrgngp R NrmRing R NrmGrp
3 ngpxms R NrmGrp R ∞MetSp
4 1 2 3 3syl R ℝExt R ∞MetSp
5 xmstps R ∞MetSp R TopSp
6 4 5 syl R ℝExt R TopSp