Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology and algebraic structures
Canonical embedding of the real numbers into a complete ordered field
rrextnrg
Next ⟩
rrextdrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrextnrg
Description:
An extension of
RR
is a normed ring.
(Contributed by
Thierry Arnoux
, 2-May-2018)
Ref
Expression
Assertion
rrextnrg
⊢
R
∈
ℝExt
→
R
∈
NrmRing
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
R
=
Base
R
2
eqid
⊢
dist
⁡
R
↾
Base
R
×
Base
R
=
dist
⁡
R
↾
Base
R
×
Base
R
3
eqid
⊢
ℤMod
⁡
R
=
ℤMod
⁡
R
4
1
2
3
isrrext
⊢
R
∈
ℝExt
↔
R
∈
NrmRing
∧
R
∈
DivRing
∧
ℤMod
⁡
R
∈
NrmMod
∧
chr
⁡
R
=
0
∧
R
∈
CUnifSp
∧
UnifSt
⁡
R
=
metUnif
⁡
dist
⁡
R
↾
Base
R
×
Base
R
5
4
simp1bi
⊢
R
∈
ℝExt
→
R
∈
NrmRing
∧
R
∈
DivRing
6
5
simpld
⊢
R
∈
ℝExt
→
R
∈
NrmRing