Metamath Proof Explorer


Theorem rrextnrg

Description: An extension of RR is a normed ring. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rrextnrg RℝExtRNrmRing

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid distRBaseR×BaseR=distRBaseR×BaseR
3 eqid ℤModR=ℤModR
4 1 2 3 isrrext RℝExtRNrmRingRDivRingℤModRNrmModchrR=0RCUnifSpUnifStR=metUnifdistRBaseR×BaseR
5 4 simp1bi RℝExtRNrmRingRDivRing
6 5 simpld RℝExtRNrmRing