Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rrexttps | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ TopSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing ) | |
2 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
3 | ngpxms | ⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp ) |
5 | xmstps | ⊢ ( 𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp ) | |
6 | 4 5 | syl | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ TopSp ) |