Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rrexttps | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ TopSp ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rrextnrg | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing ) | |
| 2 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
| 3 | ngpxms | ⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp ) | |
| 4 | xmstps | ⊢ ( 𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp ) | |
| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ TopSp ) |