Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rrexttps | β’ ( π β βExt β π β TopSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg | β’ ( π β βExt β π β NrmRing ) | |
2 | nrgngp | β’ ( π β NrmRing β π β NrmGrp ) | |
3 | ngpxms | β’ ( π β NrmGrp β π β βMetSp ) | |
4 | 1 2 3 | 3syl | β’ ( π β βExt β π β βMetSp ) |
5 | xmstps | β’ ( π β βMetSp β π β TopSp ) | |
6 | 4 5 | syl | β’ ( π β βExt β π β TopSp ) |