| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrexthaus.1 | ⊢ 𝐾  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 2 |  | rrextnrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  NrmRing ) | 
						
							| 3 |  | nrgngp | ⊢ ( 𝑅  ∈  NrmRing  →  𝑅  ∈  NrmGrp ) | 
						
							| 4 |  | ngpxms | ⊢ ( 𝑅  ∈  NrmGrp  →  𝑅  ∈  ∞MetSp ) | 
						
							| 5 | 2 3 4 | 3syl | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  ∞MetSp ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 8 | 1 6 7 | xmstopn | ⊢ ( 𝑅  ∈  ∞MetSp  →  𝐾  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 9 | 5 8 | syl | ⊢ ( 𝑅  ∈   ℝExt   →  𝐾  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 10 | 6 7 | xmsxmet | ⊢ ( 𝑅  ∈  ∞MetSp  →  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) | 
						
							| 12 | 11 | methaus | ⊢ ( ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑅 ) )  →  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) )  ∈  Haus ) | 
						
							| 13 | 5 10 12 | 3syl | ⊢ ( 𝑅  ∈   ℝExt   →  ( MetOpen ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) )  ∈  Haus ) | 
						
							| 14 | 9 13 | eqeltrd | ⊢ ( 𝑅  ∈   ℝExt   →  𝐾  ∈  Haus ) |