| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrexthaus.1 |
|- K = ( TopOpen ` R ) |
| 2 |
|
rrextnrg |
|- ( R e. RRExt -> R e. NrmRing ) |
| 3 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
| 4 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
| 5 |
2 3 4
|
3syl |
|- ( R e. RRExt -> R e. *MetSp ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 8 |
1 6 7
|
xmstopn |
|- ( R e. *MetSp -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 9 |
5 8
|
syl |
|- ( R e. RRExt -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 10 |
6 7
|
xmsxmet |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
| 11 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
| 12 |
11
|
methaus |
|- ( ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) |
| 13 |
5 10 12
|
3syl |
|- ( R e. RRExt -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) |
| 14 |
9 13
|
eqeltrd |
|- ( R e. RRExt -> K e. Haus ) |