Step |
Hyp |
Ref |
Expression |
1 |
|
rrexthaus.1 |
|- K = ( TopOpen ` R ) |
2 |
|
rrextnrg |
|- ( R e. RRExt -> R e. NrmRing ) |
3 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
4 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
5 |
2 3 4
|
3syl |
|- ( R e. RRExt -> R e. *MetSp ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
8 |
1 6 7
|
xmstopn |
|- ( R e. *MetSp -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
9 |
5 8
|
syl |
|- ( R e. RRExt -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
10 |
6 7
|
xmsxmet |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
11 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
12 |
11
|
methaus |
|- ( ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) |
13 |
5 10 12
|
3syl |
|- ( R e. RRExt -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) |
14 |
9 13
|
eqeltrd |
|- ( R e. RRExt -> K e. Haus ) |