| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrexthaus.1 |  |-  K = ( TopOpen ` R ) | 
						
							| 2 |  | rrextnrg |  |-  ( R e. RRExt -> R e. NrmRing ) | 
						
							| 3 |  | nrgngp |  |-  ( R e. NrmRing -> R e. NrmGrp ) | 
						
							| 4 |  | ngpxms |  |-  ( R e. NrmGrp -> R e. *MetSp ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( R e. RRExt -> R e. *MetSp ) | 
						
							| 6 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 7 |  | eqid |  |-  ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 8 | 1 6 7 | xmstopn |  |-  ( R e. *MetSp -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( R e. RRExt -> K = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 10 | 6 7 | xmsxmet |  |-  ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) | 
						
							| 11 |  | eqid |  |-  ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) | 
						
							| 12 | 11 | methaus |  |-  ( ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) | 
						
							| 13 | 5 10 12 | 3syl |  |-  ( R e. RRExt -> ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) e. Haus ) | 
						
							| 14 | 9 13 | eqeltrd |  |-  ( R e. RRExt -> K e. Haus ) |