Description: The uniformity of an extension of RR is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrextust.b | |- B = ( Base ` R ) |
|
rrextust.d | |- D = ( ( dist ` R ) |` ( B X. B ) ) |
||
Assertion | rrextust | |- ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextust.b | |- B = ( Base ` R ) |
|
2 | rrextust.d | |- D = ( ( dist ` R ) |` ( B X. B ) ) |
|
3 | eqid | |- ( ZMod ` R ) = ( ZMod ` R ) |
|
4 | 1 2 3 | isrrext | |- ( R e. RRExt <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( ( ZMod ` R ) e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) ) |
5 | 4 | simp3bi | |- ( R e. RRExt -> ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) |
6 | 5 | simprd | |- ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` D ) ) |