Metamath Proof Explorer


Theorem rrextust

Description: The uniformity of an extension of RR is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses rrextust.b
|- B = ( Base ` R )
rrextust.d
|- D = ( ( dist ` R ) |` ( B X. B ) )
Assertion rrextust
|- ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` D ) )

Proof

Step Hyp Ref Expression
1 rrextust.b
 |-  B = ( Base ` R )
2 rrextust.d
 |-  D = ( ( dist ` R ) |` ( B X. B ) )
3 eqid
 |-  ( ZMod ` R ) = ( ZMod ` R )
4 1 2 3 isrrext
 |-  ( R e. RRExt <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( ( ZMod ` R ) e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) ) )
5 4 simp3bi
 |-  ( R e. RRExt -> ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` D ) ) )
6 5 simprd
 |-  ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` D ) )