| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnnrg |
|- CCfld e. NrmRing |
| 2 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 3 |
2
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 4 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 5 |
4
|
subrgnrg |
|- ( ( CCfld e. NrmRing /\ RR e. ( SubRing ` CCfld ) ) -> RRfld e. NrmRing ) |
| 6 |
1 3 5
|
mp2an |
|- RRfld e. NrmRing |
| 7 |
2
|
simpri |
|- RRfld e. DivRing |
| 8 |
6 7
|
pm3.2i |
|- ( RRfld e. NrmRing /\ RRfld e. DivRing ) |
| 9 |
|
rezh |
|- ( ZMod ` RRfld ) e. NrmMod |
| 10 |
|
reofld |
|- RRfld e. oField |
| 11 |
|
ofldchr |
|- ( RRfld e. oField -> ( chr ` RRfld ) = 0 ) |
| 12 |
10 11
|
ax-mp |
|- ( chr ` RRfld ) = 0 |
| 13 |
9 12
|
pm3.2i |
|- ( ( ZMod ` RRfld ) e. NrmMod /\ ( chr ` RRfld ) = 0 ) |
| 14 |
|
recusp |
|- RRfld e. CUnifSp |
| 15 |
|
reust |
|- ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) |
| 16 |
14 15
|
pm3.2i |
|- ( RRfld e. CUnifSp /\ ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) ) |
| 17 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 18 |
|
eqid |
|- ( ( dist ` RRfld ) |` ( RR X. RR ) ) = ( ( dist ` RRfld ) |` ( RR X. RR ) ) |
| 19 |
|
eqid |
|- ( ZMod ` RRfld ) = ( ZMod ` RRfld ) |
| 20 |
17 18 19
|
isrrext |
|- ( RRfld e. RRExt <-> ( ( RRfld e. NrmRing /\ RRfld e. DivRing ) /\ ( ( ZMod ` RRfld ) e. NrmMod /\ ( chr ` RRfld ) = 0 ) /\ ( RRfld e. CUnifSp /\ ( UnifSt ` RRfld ) = ( metUnif ` ( ( dist ` RRfld ) |` ( RR X. RR ) ) ) ) ) ) |
| 21 |
8 13 16 20
|
mpbir3an |
|- RRfld e. RRExt |