Metamath Proof Explorer


Theorem rerrext

Description: The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rerrext fld ℝExt

Proof

Step Hyp Ref Expression
1 cnnrg fld NrmRing
2 resubdrg SubRing fld fld DivRing
3 2 simpli SubRing fld
4 df-refld fld = fld 𝑠
5 4 subrgnrg fld NrmRing SubRing fld fld NrmRing
6 1 3 5 mp2an fld NrmRing
7 2 simpri fld DivRing
8 6 7 pm3.2i fld NrmRing fld DivRing
9 rezh ℤMod fld NrmMod
10 reofld fld oField
11 ofldchr fld oField chr fld = 0
12 10 11 ax-mp chr fld = 0
13 9 12 pm3.2i ℤMod fld NrmMod chr fld = 0
14 recusp fld CUnifSp
15 reust UnifSt fld = metUnif dist fld 2
16 14 15 pm3.2i fld CUnifSp UnifSt fld = metUnif dist fld 2
17 rebase = Base fld
18 eqid dist fld 2 = dist fld 2
19 eqid ℤMod fld = ℤMod fld
20 17 18 19 isrrext fld ℝExt fld NrmRing fld DivRing ℤMod fld NrmMod chr fld = 0 fld CUnifSp UnifSt fld = metUnif dist fld 2
21 8 13 16 20 mpbir3an fld ℝExt