Step |
Hyp |
Ref |
Expression |
1 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
2 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
3 |
2
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
4 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
5 |
4
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing ) |
6 |
1 3 5
|
mp2an |
⊢ ℝfld ∈ NrmRing |
7 |
2
|
simpri |
⊢ ℝfld ∈ DivRing |
8 |
6 7
|
pm3.2i |
⊢ ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing ) |
9 |
|
rezh |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmMod |
10 |
|
reofld |
⊢ ℝfld ∈ oField |
11 |
|
ofldchr |
⊢ ( ℝfld ∈ oField → ( chr ‘ ℝfld ) = 0 ) |
12 |
10 11
|
ax-mp |
⊢ ( chr ‘ ℝfld ) = 0 |
13 |
9 12
|
pm3.2i |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 ) |
14 |
|
recusp |
⊢ ℝfld ∈ CUnifSp |
15 |
|
reust |
⊢ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) |
16 |
14 15
|
pm3.2i |
⊢ ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) |
17 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
18 |
|
eqid |
⊢ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) |
19 |
|
eqid |
⊢ ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld ) |
20 |
17 18 19
|
isrrext |
⊢ ( ℝfld ∈ ℝExt ↔ ( ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing ) ∧ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 ) ∧ ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) ) ) |
21 |
8 13 16 20
|
mpbir3an |
⊢ ℝfld ∈ ℝExt |