Metamath Proof Explorer


Theorem rerrext

Description: The field of the real numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion rerrext fld ∈ ℝExt

Proof

Step Hyp Ref Expression
1 cnnrg fld ∈ NrmRing
2 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
3 2 simpli ℝ ∈ ( SubRing ‘ ℂfld )
4 df-refld fld = ( ℂflds ℝ )
5 4 subrgnrg ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing )
6 1 3 5 mp2an fld ∈ NrmRing
7 2 simpri fld ∈ DivRing
8 6 7 pm3.2i ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing )
9 rezh ( ℤMod ‘ ℝfld ) ∈ NrmMod
10 reofld fld ∈ oField
11 ofldchr ( ℝfld ∈ oField → ( chr ‘ ℝfld ) = 0 )
12 10 11 ax-mp ( chr ‘ ℝfld ) = 0
13 9 12 pm3.2i ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 )
14 recusp fld ∈ CUnifSp
15 reust ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) )
16 14 15 pm3.2i ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) )
17 rebase ℝ = ( Base ‘ ℝfld )
18 eqid ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) )
19 eqid ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld )
20 17 18 19 isrrext ( ℝfld ∈ ℝExt ↔ ( ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing ) ∧ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 ) ∧ ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) ) )
21 8 13 16 20 mpbir3an fld ∈ ℝExt