| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
| 2 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 3 |
2
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 4 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 5 |
4
|
subrgnrg |
⊢ ( ( ℂfld ∈ NrmRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ℝfld ∈ NrmRing ) |
| 6 |
1 3 5
|
mp2an |
⊢ ℝfld ∈ NrmRing |
| 7 |
2
|
simpri |
⊢ ℝfld ∈ DivRing |
| 8 |
6 7
|
pm3.2i |
⊢ ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing ) |
| 9 |
|
rezh |
⊢ ( ℤMod ‘ ℝfld ) ∈ NrmMod |
| 10 |
|
reofld |
⊢ ℝfld ∈ oField |
| 11 |
|
ofldchr |
⊢ ( ℝfld ∈ oField → ( chr ‘ ℝfld ) = 0 ) |
| 12 |
10 11
|
ax-mp |
⊢ ( chr ‘ ℝfld ) = 0 |
| 13 |
9 12
|
pm3.2i |
⊢ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 ) |
| 14 |
|
recusp |
⊢ ℝfld ∈ CUnifSp |
| 15 |
|
reust |
⊢ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) |
| 16 |
14 15
|
pm3.2i |
⊢ ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) |
| 17 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 18 |
|
eqid |
⊢ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) |
| 19 |
|
eqid |
⊢ ( ℤMod ‘ ℝfld ) = ( ℤMod ‘ ℝfld ) |
| 20 |
17 18 19
|
isrrext |
⊢ ( ℝfld ∈ ℝExt ↔ ( ( ℝfld ∈ NrmRing ∧ ℝfld ∈ DivRing ) ∧ ( ( ℤMod ‘ ℝfld ) ∈ NrmMod ∧ ( chr ‘ ℝfld ) = 0 ) ∧ ( ℝfld ∈ CUnifSp ∧ ( UnifSt ‘ ℝfld ) = ( metUnif ‘ ( ( dist ‘ ℝfld ) ↾ ( ℝ × ℝ ) ) ) ) ) ) |
| 21 |
8 13 16 20
|
mpbir3an |
⊢ ℝfld ∈ ℝExt |