| Step | Hyp | Ref | Expression | 
						
							| 1 |  | refld | ⊢ ℝfld  ∈  Field | 
						
							| 2 |  | isfld | ⊢ ( ℝfld  ∈  Field  ↔  ( ℝfld  ∈  DivRing  ∧  ℝfld  ∈  CRing ) ) | 
						
							| 3 | 2 | simplbi | ⊢ ( ℝfld  ∈  Field  →  ℝfld  ∈  DivRing ) | 
						
							| 4 |  | drngring | ⊢ ( ℝfld  ∈  DivRing  →  ℝfld  ∈  Ring ) | 
						
							| 5 | 1 3 4 | mp2b | ⊢ ℝfld  ∈  Ring | 
						
							| 6 |  | ringgrp | ⊢ ( ℝfld  ∈  Ring  →  ℝfld  ∈  Grp ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ℝfld  ∈  Grp | 
						
							| 8 |  | grpmnd | ⊢ ( ℝfld  ∈  Grp  →  ℝfld  ∈  Mnd ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ℝfld  ∈  Mnd | 
						
							| 10 |  | retos | ⊢ ℝfld  ∈  Toset | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑎  ≤  𝑏 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 12 |  | simpr1 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑎  ≤  𝑏 ) )  →  𝑏  ∈  ℝ ) | 
						
							| 13 |  | simpr2 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑎  ≤  𝑏 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 14 |  | simpr3 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑎  ≤  𝑏 ) )  →  𝑎  ≤  𝑏 ) | 
						
							| 15 | 11 12 13 14 | leadd1dd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑎  ≤  𝑏 ) )  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) | 
						
							| 16 | 15 | 3anassrs | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  𝑐  ∈  ℝ )  ∧  𝑎  ≤  𝑏 )  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  𝑐  ∈  ℝ )  →  ( 𝑎  ≤  𝑏  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 18 | 17 | 3impa | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑎  ≤  𝑏  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 19 | 18 | rgen3 | ⊢ ∀ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ℝ ∀ 𝑐  ∈  ℝ ( 𝑎  ≤  𝑏  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) | 
						
							| 20 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 21 |  | replusg | ⊢  +   =  ( +g ‘ ℝfld ) | 
						
							| 22 |  | rele2 | ⊢  ≤   =  ( le ‘ ℝfld ) | 
						
							| 23 | 20 21 22 | isomnd | ⊢ ( ℝfld  ∈  oMnd  ↔  ( ℝfld  ∈  Mnd  ∧  ℝfld  ∈  Toset  ∧  ∀ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ℝ ∀ 𝑐  ∈  ℝ ( 𝑎  ≤  𝑏  →  ( 𝑎  +  𝑐 )  ≤  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 24 | 9 10 19 23 | mpbir3an | ⊢ ℝfld  ∈  oMnd | 
						
							| 25 |  | isogrp | ⊢ ( ℝfld  ∈  oGrp  ↔  ( ℝfld  ∈  Grp  ∧  ℝfld  ∈  oMnd ) ) | 
						
							| 26 | 7 24 25 | mpbir2an | ⊢ ℝfld  ∈  oGrp | 
						
							| 27 |  | mulge0 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  0  ≤  𝑎 )  ∧  ( 𝑏  ∈  ℝ  ∧  0  ≤  𝑏 ) )  →  0  ≤  ( 𝑎  ·  𝑏 ) ) | 
						
							| 28 | 27 | an4s | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 0  ≤  𝑎  ∧  0  ≤  𝑏 ) )  →  0  ≤  ( 𝑎  ·  𝑏 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( ( 0  ≤  𝑎  ∧  0  ≤  𝑏 )  →  0  ≤  ( 𝑎  ·  𝑏 ) ) ) | 
						
							| 30 | 29 | rgen2 | ⊢ ∀ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ℝ ( ( 0  ≤  𝑎  ∧  0  ≤  𝑏 )  →  0  ≤  ( 𝑎  ·  𝑏 ) ) | 
						
							| 31 |  | re0g | ⊢ 0  =  ( 0g ‘ ℝfld ) | 
						
							| 32 |  | remulr | ⊢  ·   =  ( .r ‘ ℝfld ) | 
						
							| 33 | 20 31 32 22 | isorng | ⊢ ( ℝfld  ∈  oRing  ↔  ( ℝfld  ∈  Ring  ∧  ℝfld  ∈  oGrp  ∧  ∀ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ℝ ( ( 0  ≤  𝑎  ∧  0  ≤  𝑏 )  →  0  ≤  ( 𝑎  ·  𝑏 ) ) ) ) | 
						
							| 34 | 5 26 30 33 | mpbir3an | ⊢ ℝfld  ∈  oRing | 
						
							| 35 |  | isofld | ⊢ ( ℝfld  ∈  oField  ↔  ( ℝfld  ∈  Field  ∧  ℝfld  ∈  oRing ) ) | 
						
							| 36 | 1 34 35 | mpbir2an | ⊢ ℝfld  ∈  oField |