Metamath Proof Explorer


Theorem nn0omnd

Description: The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion nn0omnd ( ℂflds0 ) ∈ oMnd

Proof

Step Hyp Ref Expression
1 df-refld fld = ( ℂflds ℝ )
2 1 oveq1i ( ℝflds0 ) = ( ( ℂflds ℝ ) ↾s0 )
3 reex ℝ ∈ V
4 nn0ssre 0 ⊆ ℝ
5 ressabs ( ( ℝ ∈ V ∧ ℕ0 ⊆ ℝ ) → ( ( ℂflds ℝ ) ↾s0 ) = ( ℂflds0 ) )
6 3 4 5 mp2an ( ( ℂflds ℝ ) ↾s0 ) = ( ℂflds0 )
7 2 6 eqtri ( ℝflds0 ) = ( ℂflds0 )
8 reofld fld ∈ oField
9 isofld ( ℝfld ∈ oField ↔ ( ℝfld ∈ Field ∧ ℝfld ∈ oRing ) )
10 9 simprbi ( ℝfld ∈ oField → ℝfld ∈ oRing )
11 orngogrp ( ℝfld ∈ oRing → ℝfld ∈ oGrp )
12 isogrp ( ℝfld ∈ oGrp ↔ ( ℝfld ∈ Grp ∧ ℝfld ∈ oMnd ) )
13 12 simprbi ( ℝfld ∈ oGrp → ℝfld ∈ oMnd )
14 10 11 13 3syl ( ℝfld ∈ oField → ℝfld ∈ oMnd )
15 8 14 ax-mp fld ∈ oMnd
16 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
17 eqid ( ℂflds0 ) = ( ℂflds0 )
18 17 submmnd ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂflds0 ) ∈ Mnd )
19 16 18 ax-mp ( ℂflds0 ) ∈ Mnd
20 7 19 eqeltri ( ℝflds0 ) ∈ Mnd
21 submomnd ( ( ℝfld ∈ oMnd ∧ ( ℝflds0 ) ∈ Mnd ) → ( ℝflds0 ) ∈ oMnd )
22 15 20 21 mp2an ( ℝflds0 ) ∈ oMnd
23 7 22 eqeltrri ( ℂflds0 ) ∈ oMnd