| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( ℝfld  ↾s  ℕ0 )  =  ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 ) | 
						
							| 3 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 4 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 5 |  | ressabs | ⊢ ( ( ℝ  ∈  V  ∧  ℕ0  ⊆  ℝ )  →  ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 7 | 2 6 | eqtri | ⊢ ( ℝfld  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 8 |  | reofld | ⊢ ℝfld  ∈  oField | 
						
							| 9 |  | isofld | ⊢ ( ℝfld  ∈  oField  ↔  ( ℝfld  ∈  Field  ∧  ℝfld  ∈  oRing ) ) | 
						
							| 10 | 9 | simprbi | ⊢ ( ℝfld  ∈  oField  →  ℝfld  ∈  oRing ) | 
						
							| 11 |  | orngogrp | ⊢ ( ℝfld  ∈  oRing  →  ℝfld  ∈  oGrp ) | 
						
							| 12 |  | isogrp | ⊢ ( ℝfld  ∈  oGrp  ↔  ( ℝfld  ∈  Grp  ∧  ℝfld  ∈  oMnd ) ) | 
						
							| 13 | 12 | simprbi | ⊢ ( ℝfld  ∈  oGrp  →  ℝfld  ∈  oMnd ) | 
						
							| 14 | 10 11 13 | 3syl | ⊢ ( ℝfld  ∈  oField  →  ℝfld  ∈  oMnd ) | 
						
							| 15 | 8 14 | ax-mp | ⊢ ℝfld  ∈  oMnd | 
						
							| 16 |  | nn0subm | ⊢ ℕ0  ∈  ( SubMnd ‘ ℂfld ) | 
						
							| 17 |  | eqid | ⊢ ( ℂfld  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 18 | 17 | submmnd | ⊢ ( ℕ0  ∈  ( SubMnd ‘ ℂfld )  →  ( ℂfld  ↾s  ℕ0 )  ∈  Mnd ) | 
						
							| 19 | 16 18 | ax-mp | ⊢ ( ℂfld  ↾s  ℕ0 )  ∈  Mnd | 
						
							| 20 | 7 19 | eqeltri | ⊢ ( ℝfld  ↾s  ℕ0 )  ∈  Mnd | 
						
							| 21 |  | submomnd | ⊢ ( ( ℝfld  ∈  oMnd  ∧  ( ℝfld  ↾s  ℕ0 )  ∈  Mnd )  →  ( ℝfld  ↾s  ℕ0 )  ∈  oMnd ) | 
						
							| 22 | 15 20 21 | mp2an | ⊢ ( ℝfld  ↾s  ℕ0 )  ∈  oMnd | 
						
							| 23 | 7 22 | eqeltrri | ⊢ ( ℂfld  ↾s  ℕ0 )  ∈  oMnd |