Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
2 |
1
|
oveq1i |
⊢ ( ℝfld ↾s ℕ0 ) = ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) |
3 |
|
reex |
⊢ ℝ ∈ V |
4 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
5 |
|
ressabs |
⊢ ( ( ℝ ∈ V ∧ ℕ0 ⊆ ℝ ) → ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
7 |
2 6
|
eqtri |
⊢ ( ℝfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
8 |
|
reofld |
⊢ ℝfld ∈ oField |
9 |
|
isofld |
⊢ ( ℝfld ∈ oField ↔ ( ℝfld ∈ Field ∧ ℝfld ∈ oRing ) ) |
10 |
9
|
simprbi |
⊢ ( ℝfld ∈ oField → ℝfld ∈ oRing ) |
11 |
|
orngogrp |
⊢ ( ℝfld ∈ oRing → ℝfld ∈ oGrp ) |
12 |
|
isogrp |
⊢ ( ℝfld ∈ oGrp ↔ ( ℝfld ∈ Grp ∧ ℝfld ∈ oMnd ) ) |
13 |
12
|
simprbi |
⊢ ( ℝfld ∈ oGrp → ℝfld ∈ oMnd ) |
14 |
10 11 13
|
3syl |
⊢ ( ℝfld ∈ oField → ℝfld ∈ oMnd ) |
15 |
8 14
|
ax-mp |
⊢ ℝfld ∈ oMnd |
16 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
17 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
18 |
17
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
19 |
16 18
|
ax-mp |
⊢ ( ℂfld ↾s ℕ0 ) ∈ Mnd |
20 |
7 19
|
eqeltri |
⊢ ( ℝfld ↾s ℕ0 ) ∈ Mnd |
21 |
|
submomnd |
⊢ ( ( ℝfld ∈ oMnd ∧ ( ℝfld ↾s ℕ0 ) ∈ Mnd ) → ( ℝfld ↾s ℕ0 ) ∈ oMnd ) |
22 |
15 20 21
|
mp2an |
⊢ ( ℝfld ↾s ℕ0 ) ∈ oMnd |
23 |
7 22
|
eqeltrri |
⊢ ( ℂfld ↾s ℕ0 ) ∈ oMnd |