Metamath Proof Explorer


Theorem nn0omnd

Description: The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion nn0omnd fld 𝑠 0 oMnd

Proof

Step Hyp Ref Expression
1 df-refld fld = fld 𝑠
2 1 oveq1i fld 𝑠 0 = fld 𝑠 𝑠 0
3 reex V
4 nn0ssre 0
5 ressabs V 0 fld 𝑠 𝑠 0 = fld 𝑠 0
6 3 4 5 mp2an fld 𝑠 𝑠 0 = fld 𝑠 0
7 2 6 eqtri fld 𝑠 0 = fld 𝑠 0
8 reofld fld oField
9 isofld fld oField fld Field fld oRing
10 9 simprbi fld oField fld oRing
11 orngogrp fld oRing fld oGrp
12 isogrp fld oGrp fld Grp fld oMnd
13 12 simprbi fld oGrp fld oMnd
14 10 11 13 3syl fld oField fld oMnd
15 8 14 ax-mp fld oMnd
16 nn0subm 0 SubMnd fld
17 eqid fld 𝑠 0 = fld 𝑠 0
18 17 submmnd 0 SubMnd fld fld 𝑠 0 Mnd
19 16 18 ax-mp fld 𝑠 0 Mnd
20 7 19 eqeltri fld 𝑠 0 Mnd
21 submomnd fld oMnd fld 𝑠 0 Mnd fld 𝑠 0 oMnd
22 15 20 21 mp2an fld 𝑠 0 oMnd
23 7 22 eqeltrri fld 𝑠 0 oMnd