Metamath Proof Explorer


Theorem nn0omnd

Description: The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion nn0omnd fld𝑠0oMnd

Proof

Step Hyp Ref Expression
1 df-refld fld=fld𝑠
2 1 oveq1i fld𝑠0=fld𝑠𝑠0
3 reex V
4 nn0ssre 0
5 ressabs V0fld𝑠𝑠0=fld𝑠0
6 3 4 5 mp2an fld𝑠𝑠0=fld𝑠0
7 2 6 eqtri fld𝑠0=fld𝑠0
8 reofld fldoField
9 isofld fldoFieldfldFieldfldoRing
10 9 simprbi fldoFieldfldoRing
11 orngogrp fldoRingfldoGrp
12 isogrp fldoGrpfldGrpfldoMnd
13 12 simprbi fldoGrpfldoMnd
14 10 11 13 3syl fldoFieldfldoMnd
15 8 14 ax-mp fldoMnd
16 nn0subm 0SubMndfld
17 eqid fld𝑠0=fld𝑠0
18 17 submmnd 0SubMndfldfld𝑠0Mnd
19 16 18 ax-mp fld𝑠0Mnd
20 7 19 eqeltri fld𝑠0Mnd
21 submomnd fldoMndfld𝑠0Mndfld𝑠0oMnd
22 15 20 21 mp2an fld𝑠0oMnd
23 7 22 eqeltrri fld𝑠0oMnd