Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
2 |
1
|
oveq1i |
|- ( RRfld |`s NN0 ) = ( ( CCfld |`s RR ) |`s NN0 ) |
3 |
|
reex |
|- RR e. _V |
4 |
|
nn0ssre |
|- NN0 C_ RR |
5 |
|
ressabs |
|- ( ( RR e. _V /\ NN0 C_ RR ) -> ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) ) |
6 |
3 4 5
|
mp2an |
|- ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) |
7 |
2 6
|
eqtri |
|- ( RRfld |`s NN0 ) = ( CCfld |`s NN0 ) |
8 |
|
reofld |
|- RRfld e. oField |
9 |
|
isofld |
|- ( RRfld e. oField <-> ( RRfld e. Field /\ RRfld e. oRing ) ) |
10 |
9
|
simprbi |
|- ( RRfld e. oField -> RRfld e. oRing ) |
11 |
|
orngogrp |
|- ( RRfld e. oRing -> RRfld e. oGrp ) |
12 |
|
isogrp |
|- ( RRfld e. oGrp <-> ( RRfld e. Grp /\ RRfld e. oMnd ) ) |
13 |
12
|
simprbi |
|- ( RRfld e. oGrp -> RRfld e. oMnd ) |
14 |
10 11 13
|
3syl |
|- ( RRfld e. oField -> RRfld e. oMnd ) |
15 |
8 14
|
ax-mp |
|- RRfld e. oMnd |
16 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
17 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
18 |
17
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> ( CCfld |`s NN0 ) e. Mnd ) |
19 |
16 18
|
ax-mp |
|- ( CCfld |`s NN0 ) e. Mnd |
20 |
7 19
|
eqeltri |
|- ( RRfld |`s NN0 ) e. Mnd |
21 |
|
submomnd |
|- ( ( RRfld e. oMnd /\ ( RRfld |`s NN0 ) e. Mnd ) -> ( RRfld |`s NN0 ) e. oMnd ) |
22 |
15 20 21
|
mp2an |
|- ( RRfld |`s NN0 ) e. oMnd |
23 |
7 22
|
eqeltrri |
|- ( CCfld |`s NN0 ) e. oMnd |