| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reofld |  |-  RRfld e. oField | 
						
							| 2 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 3 |  | eqid |  |-  ( ZRHom ` RRfld ) = ( ZRHom ` RRfld ) | 
						
							| 4 |  | relt |  |-  < = ( lt ` RRfld ) | 
						
							| 5 | 2 3 4 | isarchiofld |  |-  ( RRfld e. oField -> ( RRfld e. Archi <-> A. x e. RR E. n e. NN x < ( ( ZRHom ` RRfld ) ` n ) ) ) | 
						
							| 6 | 1 5 | ax-mp |  |-  ( RRfld e. Archi <-> A. x e. RR E. n e. NN x < ( ( ZRHom ` RRfld ) ` n ) ) | 
						
							| 7 |  | arch |  |-  ( x e. RR -> E. n e. NN x < n ) | 
						
							| 8 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 9 |  | refld |  |-  RRfld e. Field | 
						
							| 10 |  | isfld |  |-  ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) | 
						
							| 11 | 10 | simplbi |  |-  ( RRfld e. Field -> RRfld e. DivRing ) | 
						
							| 12 |  | drngring |  |-  ( RRfld e. DivRing -> RRfld e. Ring ) | 
						
							| 13 | 9 11 12 | mp2b |  |-  RRfld e. Ring | 
						
							| 14 |  | eqid |  |-  ( .g ` RRfld ) = ( .g ` RRfld ) | 
						
							| 15 |  | re1r |  |-  1 = ( 1r ` RRfld ) | 
						
							| 16 | 3 14 15 | zrhmulg |  |-  ( ( RRfld e. Ring /\ n e. ZZ ) -> ( ( ZRHom ` RRfld ) ` n ) = ( n ( .g ` RRfld ) 1 ) ) | 
						
							| 17 | 13 16 | mpan |  |-  ( n e. ZZ -> ( ( ZRHom ` RRfld ) ` n ) = ( n ( .g ` RRfld ) 1 ) ) | 
						
							| 18 |  | 1re |  |-  1 e. RR | 
						
							| 19 |  | remulg |  |-  ( ( n e. ZZ /\ 1 e. RR ) -> ( n ( .g ` RRfld ) 1 ) = ( n x. 1 ) ) | 
						
							| 20 | 18 19 | mpan2 |  |-  ( n e. ZZ -> ( n ( .g ` RRfld ) 1 ) = ( n x. 1 ) ) | 
						
							| 21 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 22 | 21 | mulridd |  |-  ( n e. ZZ -> ( n x. 1 ) = n ) | 
						
							| 23 | 17 20 22 | 3eqtrd |  |-  ( n e. ZZ -> ( ( ZRHom ` RRfld ) ` n ) = n ) | 
						
							| 24 | 23 | breq2d |  |-  ( n e. ZZ -> ( x < ( ( ZRHom ` RRfld ) ` n ) <-> x < n ) ) | 
						
							| 25 | 8 24 | syl |  |-  ( n e. NN -> ( x < ( ( ZRHom ` RRfld ) ` n ) <-> x < n ) ) | 
						
							| 26 | 25 | rexbiia |  |-  ( E. n e. NN x < ( ( ZRHom ` RRfld ) ` n ) <-> E. n e. NN x < n ) | 
						
							| 27 | 7 26 | sylibr |  |-  ( x e. RR -> E. n e. NN x < ( ( ZRHom ` RRfld ) ` n ) ) | 
						
							| 28 | 6 27 | mprgbir |  |-  RRfld e. Archi |