| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 2 |  | readdcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) | 
						
							| 3 |  | renegcl |  |-  ( x e. RR -> -u x e. RR ) | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 | 1 2 3 4 | cnsubglem |  |-  RR e. ( SubGrp ` CCfld ) | 
						
							| 6 |  | eqid |  |-  ( .g ` CCfld ) = ( .g ` CCfld ) | 
						
							| 7 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 8 |  | eqid |  |-  ( .g ` RRfld ) = ( .g ` RRfld ) | 
						
							| 9 | 6 7 8 | subgmulg |  |-  ( ( RR e. ( SubGrp ` CCfld ) /\ N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) | 
						
							| 10 | 5 9 | mp3an1 |  |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N ( .g ` RRfld ) A ) ) | 
						
							| 11 |  | simpr |  |-  ( ( N e. ZZ /\ A e. RR ) -> A e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( N e. ZZ /\ A e. RR ) -> A e. CC ) | 
						
							| 13 |  | cnfldmulg |  |-  ( ( N e. ZZ /\ A e. CC ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) | 
						
							| 14 | 12 13 | syldan |  |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` CCfld ) A ) = ( N x. A ) ) | 
						
							| 15 | 10 14 | eqtr3d |  |-  ( ( N e. ZZ /\ A e. RR ) -> ( N ( .g ` RRfld ) A ) = ( N x. A ) ) |