| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnsubglem.1 |
|- ( x e. A -> x e. CC ) |
| 2 |
|
cnsubglem.2 |
|- ( ( x e. A /\ y e. A ) -> ( x + y ) e. A ) |
| 3 |
|
cnsubglem.3 |
|- ( x e. A -> -u x e. A ) |
| 4 |
|
cnsubglem.4 |
|- B e. A |
| 5 |
1
|
ssriv |
|- A C_ CC |
| 6 |
4
|
ne0ii |
|- A =/= (/) |
| 7 |
2
|
ralrimiva |
|- ( x e. A -> A. y e. A ( x + y ) e. A ) |
| 8 |
|
cnfldneg |
|- ( x e. CC -> ( ( invg ` CCfld ) ` x ) = -u x ) |
| 9 |
1 8
|
syl |
|- ( x e. A -> ( ( invg ` CCfld ) ` x ) = -u x ) |
| 10 |
9 3
|
eqeltrd |
|- ( x e. A -> ( ( invg ` CCfld ) ` x ) e. A ) |
| 11 |
7 10
|
jca |
|- ( x e. A -> ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) |
| 12 |
11
|
rgen |
|- A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) |
| 13 |
|
cnring |
|- CCfld e. Ring |
| 14 |
|
ringgrp |
|- ( CCfld e. Ring -> CCfld e. Grp ) |
| 15 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 16 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 17 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
| 18 |
15 16 17
|
issubg2 |
|- ( CCfld e. Grp -> ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) ) |
| 19 |
13 14 18
|
mp2b |
|- ( A e. ( SubGrp ` CCfld ) <-> ( A C_ CC /\ A =/= (/) /\ A. x e. A ( A. y e. A ( x + y ) e. A /\ ( ( invg ` CCfld ) ` x ) e. A ) ) ) |
| 20 |
5 6 12 19
|
mpbir3an |
|- A e. ( SubGrp ` CCfld ) |