| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 2 |  | readdcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 3 |  | renegcl | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ ) | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 | 1 2 3 4 | cnsubglem | ⊢ ℝ  ∈  ( SubGrp ‘ ℂfld ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ ℂfld )  =  ( .g ‘ ℂfld ) | 
						
							| 7 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 8 |  | eqid | ⊢ ( .g ‘ ℝfld )  =  ( .g ‘ ℝfld ) | 
						
							| 9 | 6 7 8 | subgmulg | ⊢ ( ( ℝ  ∈  ( SubGrp ‘ ℂfld )  ∧  𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ( .g ‘ ℂfld ) 𝐴 )  =  ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) | 
						
							| 10 | 5 9 | mp3an1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ( .g ‘ ℂfld ) 𝐴 )  =  ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 13 |  | cnfldmulg | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℂ )  →  ( 𝑁 ( .g ‘ ℂfld ) 𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ( .g ‘ ℂfld ) 𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 15 | 10 14 | eqtr3d | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ( .g ‘ ℝfld ) 𝐴 )  =  ( 𝑁  ·  𝐴 ) ) |