| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reofld | ⊢ ℝfld  ∈  oField | 
						
							| 2 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 3 |  | eqid | ⊢ ( ℤRHom ‘ ℝfld )  =  ( ℤRHom ‘ ℝfld ) | 
						
							| 4 |  | relt | ⊢  <   =  ( lt ‘ ℝfld ) | 
						
							| 5 | 2 3 4 | isarchiofld | ⊢ ( ℝfld  ∈  oField  →  ( ℝfld  ∈  Archi  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℕ 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 ) ) ) | 
						
							| 6 | 1 5 | ax-mp | ⊢ ( ℝfld  ∈  Archi  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑛  ∈  ℕ 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 ) ) | 
						
							| 7 |  | arch | ⊢ ( 𝑥  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ 𝑥  <  𝑛 ) | 
						
							| 8 |  | nnz | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ ) | 
						
							| 9 |  | refld | ⊢ ℝfld  ∈  Field | 
						
							| 10 |  | isfld | ⊢ ( ℝfld  ∈  Field  ↔  ( ℝfld  ∈  DivRing  ∧  ℝfld  ∈  CRing ) ) | 
						
							| 11 | 10 | simplbi | ⊢ ( ℝfld  ∈  Field  →  ℝfld  ∈  DivRing ) | 
						
							| 12 |  | drngring | ⊢ ( ℝfld  ∈  DivRing  →  ℝfld  ∈  Ring ) | 
						
							| 13 | 9 11 12 | mp2b | ⊢ ℝfld  ∈  Ring | 
						
							| 14 |  | eqid | ⊢ ( .g ‘ ℝfld )  =  ( .g ‘ ℝfld ) | 
						
							| 15 |  | re1r | ⊢ 1  =  ( 1r ‘ ℝfld ) | 
						
							| 16 | 3 14 15 | zrhmulg | ⊢ ( ( ℝfld  ∈  Ring  ∧  𝑛  ∈  ℤ )  →  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  =  ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) | 
						
							| 17 | 13 16 | mpan | ⊢ ( 𝑛  ∈  ℤ  →  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  =  ( 𝑛 ( .g ‘ ℝfld ) 1 ) ) | 
						
							| 18 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 19 |  | remulg | ⊢ ( ( 𝑛  ∈  ℤ  ∧  1  ∈  ℝ )  →  ( 𝑛 ( .g ‘ ℝfld ) 1 )  =  ( 𝑛  ·  1 ) ) | 
						
							| 20 | 18 19 | mpan2 | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛 ( .g ‘ ℝfld ) 1 )  =  ( 𝑛  ·  1 ) ) | 
						
							| 21 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 22 | 21 | mulridd | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ·  1 )  =  𝑛 ) | 
						
							| 23 | 17 20 22 | 3eqtrd | ⊢ ( 𝑛  ∈  ℤ  →  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  =  𝑛 ) | 
						
							| 24 | 23 | breq2d | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  ↔  𝑥  <  𝑛 ) ) | 
						
							| 25 | 8 24 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  ↔  𝑥  <  𝑛 ) ) | 
						
							| 26 | 25 | rexbiia | ⊢ ( ∃ 𝑛  ∈  ℕ 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ 𝑥  <  𝑛 ) | 
						
							| 27 | 7 26 | sylibr | ⊢ ( 𝑥  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ 𝑥  <  ( ( ℤRHom ‘ ℝfld ) ‘ 𝑛 ) ) | 
						
							| 28 | 6 27 | mprgbir | ⊢ ℝfld  ∈  Archi |