Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
2 |
1
|
oveq1i |
⊢ ( ℝfld ↾s ℕ0 ) = ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) |
3 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
4 |
3
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
5 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
6 |
|
ressabs |
⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) → ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
8 |
2 7
|
eqtri |
⊢ ( ℝfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
9 |
|
retos |
⊢ ℝfld ∈ Toset |
10 |
|
rearchi |
⊢ ℝfld ∈ Archi |
11 |
9 10
|
pm3.2i |
⊢ ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi ) |
12 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
13 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
14 |
|
subgsubm |
⊢ ( ℝ ∈ ( SubGrp ‘ ℂfld ) → ℝ ∈ ( SubMnd ‘ ℂfld ) ) |
15 |
4 13 14
|
mp2b |
⊢ ℝ ∈ ( SubMnd ‘ ℂfld ) |
16 |
1
|
subsubm |
⊢ ( ℝ ∈ ( SubMnd ‘ ℂfld ) → ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) ) |
18 |
12 5 17
|
mpbir2an |
⊢ ℕ0 ∈ ( SubMnd ‘ ℝfld ) |
19 |
|
submarchi |
⊢ ( ( ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi ) ∧ ℕ0 ∈ ( SubMnd ‘ ℝfld ) ) → ( ℝfld ↾s ℕ0 ) ∈ Archi ) |
20 |
11 18 19
|
mp2an |
⊢ ( ℝfld ↾s ℕ0 ) ∈ Archi |
21 |
8 20
|
eqeltrri |
⊢ ( ℂfld ↾s ℕ0 ) ∈ Archi |