| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
| 2 |
1
|
oveq1i |
⊢ ( ℝfld ↾s ℕ0 ) = ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) |
| 3 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
| 4 |
3
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
| 5 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 6 |
|
ressabs |
⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) → ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
| 8 |
2 7
|
eqtri |
⊢ ( ℝfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
| 9 |
|
retos |
⊢ ℝfld ∈ Toset |
| 10 |
|
rearchi |
⊢ ℝfld ∈ Archi |
| 11 |
9 10
|
pm3.2i |
⊢ ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi ) |
| 12 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
| 13 |
|
subrgsubg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) ) |
| 14 |
|
subgsubm |
⊢ ( ℝ ∈ ( SubGrp ‘ ℂfld ) → ℝ ∈ ( SubMnd ‘ ℂfld ) ) |
| 15 |
4 13 14
|
mp2b |
⊢ ℝ ∈ ( SubMnd ‘ ℂfld ) |
| 16 |
1
|
subsubm |
⊢ ( ℝ ∈ ( SubMnd ‘ ℂfld ) → ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) ) ) |
| 17 |
15 16
|
ax-mp |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) ) |
| 18 |
12 5 17
|
mpbir2an |
⊢ ℕ0 ∈ ( SubMnd ‘ ℝfld ) |
| 19 |
|
submarchi |
⊢ ( ( ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi ) ∧ ℕ0 ∈ ( SubMnd ‘ ℝfld ) ) → ( ℝfld ↾s ℕ0 ) ∈ Archi ) |
| 20 |
11 18 19
|
mp2an |
⊢ ( ℝfld ↾s ℕ0 ) ∈ Archi |
| 21 |
8 20
|
eqeltrri |
⊢ ( ℂfld ↾s ℕ0 ) ∈ Archi |