| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( ℝfld  ↾s  ℕ0 )  =  ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 ) | 
						
							| 3 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 4 | 3 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 5 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 6 |  | ressabs | ⊢ ( ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℕ0  ⊆  ℝ )  →  ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( ℂfld  ↾s  ℝ )  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 8 | 2 7 | eqtri | ⊢ ( ℝfld  ↾s  ℕ0 )  =  ( ℂfld  ↾s  ℕ0 ) | 
						
							| 9 |  | retos | ⊢ ℝfld  ∈  Toset | 
						
							| 10 |  | rearchi | ⊢ ℝfld  ∈  Archi | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( ℝfld  ∈  Toset  ∧  ℝfld  ∈  Archi ) | 
						
							| 12 |  | nn0subm | ⊢ ℕ0  ∈  ( SubMnd ‘ ℂfld ) | 
						
							| 13 |  | subrgsubg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ℝ  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 14 |  | subgsubm | ⊢ ( ℝ  ∈  ( SubGrp ‘ ℂfld )  →  ℝ  ∈  ( SubMnd ‘ ℂfld ) ) | 
						
							| 15 | 4 13 14 | mp2b | ⊢ ℝ  ∈  ( SubMnd ‘ ℂfld ) | 
						
							| 16 | 1 | subsubm | ⊢ ( ℝ  ∈  ( SubMnd ‘ ℂfld )  →  ( ℕ0  ∈  ( SubMnd ‘ ℝfld )  ↔  ( ℕ0  ∈  ( SubMnd ‘ ℂfld )  ∧  ℕ0  ⊆  ℝ ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ℕ0  ∈  ( SubMnd ‘ ℝfld )  ↔  ( ℕ0  ∈  ( SubMnd ‘ ℂfld )  ∧  ℕ0  ⊆  ℝ ) ) | 
						
							| 18 | 12 5 17 | mpbir2an | ⊢ ℕ0  ∈  ( SubMnd ‘ ℝfld ) | 
						
							| 19 |  | submarchi | ⊢ ( ( ( ℝfld  ∈  Toset  ∧  ℝfld  ∈  Archi )  ∧  ℕ0  ∈  ( SubMnd ‘ ℝfld ) )  →  ( ℝfld  ↾s  ℕ0 )  ∈  Archi ) | 
						
							| 20 | 11 18 19 | mp2an | ⊢ ( ℝfld  ↾s  ℕ0 )  ∈  Archi | 
						
							| 21 | 8 20 | eqeltrri | ⊢ ( ℂfld  ↾s  ℕ0 )  ∈  Archi |