Metamath Proof Explorer


Theorem nn0archi

Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018)

Ref Expression
Assertion nn0archi ( ℂflds0 ) ∈ Archi

Proof

Step Hyp Ref Expression
1 df-refld fld = ( ℂflds ℝ )
2 1 oveq1i ( ℝflds0 ) = ( ( ℂflds ℝ ) ↾s0 )
3 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
4 3 simpli ℝ ∈ ( SubRing ‘ ℂfld )
5 nn0ssre 0 ⊆ ℝ
6 ressabs ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) → ( ( ℂflds ℝ ) ↾s0 ) = ( ℂflds0 ) )
7 4 5 6 mp2an ( ( ℂflds ℝ ) ↾s0 ) = ( ℂflds0 )
8 2 7 eqtri ( ℝflds0 ) = ( ℂflds0 )
9 retos fld ∈ Toset
10 rearchi fld ∈ Archi
11 9 10 pm3.2i ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi )
12 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
13 subrgsubg ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝ ∈ ( SubGrp ‘ ℂfld ) )
14 subgsubm ( ℝ ∈ ( SubGrp ‘ ℂfld ) → ℝ ∈ ( SubMnd ‘ ℂfld ) )
15 4 13 14 mp2b ℝ ∈ ( SubMnd ‘ ℂfld )
16 1 subsubm ( ℝ ∈ ( SubMnd ‘ ℂfld ) → ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) ) )
17 15 16 ax-mp ( ℕ0 ∈ ( SubMnd ‘ ℝfld ) ↔ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) ∧ ℕ0 ⊆ ℝ ) )
18 12 5 17 mpbir2an 0 ∈ ( SubMnd ‘ ℝfld )
19 submarchi ( ( ( ℝfld ∈ Toset ∧ ℝfld ∈ Archi ) ∧ ℕ0 ∈ ( SubMnd ‘ ℝfld ) ) → ( ℝflds0 ) ∈ Archi )
20 11 18 19 mp2an ( ℝflds0 ) ∈ Archi
21 8 20 eqeltrri ( ℂflds0 ) ∈ Archi