Step |
Hyp |
Ref |
Expression |
1 |
|
submrcl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → 𝑊 ∈ Mnd ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( .g ‘ 𝑊 ) = ( .g ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( le ‘ 𝑊 ) = ( le ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( lt ‘ 𝑊 ) = ( lt ‘ 𝑊 ) |
7 |
2 3 4 5 6
|
isarchi2 |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
8 |
1 7
|
sylan2 |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) ∧ 𝑊 ∈ Archi ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) |
10 |
9
|
an32s |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
12 |
11
|
submbas |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → 𝐴 = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
13 |
2
|
submss |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
14 |
12 13
|
eqsstrrd |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑊 ) ) |
15 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑊 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
16 |
15
|
ralimdv |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
17 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
18 |
16 17
|
syld |
⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
19 |
14 18
|
syl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ) ) |
21 |
11 3
|
subm0 |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( 0g ‘ 𝑊 ) = ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( 0g ‘ 𝑊 ) = ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
23 |
11 5
|
ressle |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( le ‘ 𝑊 ) = ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
24 |
23
|
difeq1d |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( ( le ‘ 𝑊 ) ∖ I ) = ( ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ∖ I ) ) |
25 |
5 6
|
pltfval |
⊢ ( 𝑊 ∈ Mnd → ( lt ‘ 𝑊 ) = ( ( le ‘ 𝑊 ) ∖ I ) ) |
26 |
1 25
|
syl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( lt ‘ 𝑊 ) = ( ( le ‘ 𝑊 ) ∖ I ) ) |
27 |
11
|
submmnd |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( 𝑊 ↾s 𝐴 ) ∈ Mnd ) |
28 |
|
eqid |
⊢ ( le ‘ ( 𝑊 ↾s 𝐴 ) ) = ( le ‘ ( 𝑊 ↾s 𝐴 ) ) |
29 |
|
eqid |
⊢ ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) |
30 |
28 29
|
pltfval |
⊢ ( ( 𝑊 ↾s 𝐴 ) ∈ Mnd → ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ∖ I ) ) |
31 |
27 30
|
syl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ∖ I ) ) |
32 |
24 26 31
|
3eqtr4d |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( lt ‘ 𝑊 ) = ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( lt ‘ 𝑊 ) = ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
34 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → 𝑥 = 𝑥 ) |
35 |
22 33 34
|
breq123d |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ↔ ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) |
36 |
|
eqidd |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑦 = 𝑦 ) |
37 |
23
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( le ‘ 𝑊 ) = ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
38 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) |
39 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
40 |
39
|
nnnn0d |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
41 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
42 |
38 12
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝐴 = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
43 |
41 42
|
eleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝐴 ) |
44 |
|
eqid |
⊢ ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) = ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) |
45 |
4 11 44
|
submmulg |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) = ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) |
46 |
38 40 43 45
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) = ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) |
47 |
36 37 46
|
breq123d |
⊢ ( ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ↔ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) |
48 |
47
|
rexbidva |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) |
49 |
35 48
|
imbi12d |
⊢ ( ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ↔ ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
50 |
49
|
ralbidva |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
51 |
50
|
ralbidva |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑊 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
53 |
20 52
|
sylibd |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ 𝑊 ) ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
54 |
10 53
|
mpd |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) |
55 |
|
resstos |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ Toset ) |
56 |
27
|
adantl |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ Mnd ) |
57 |
|
eqid |
⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) |
58 |
|
eqid |
⊢ ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) |
59 |
57 58 44 28 29
|
isarchi2 |
⊢ ( ( ( 𝑊 ↾s 𝐴 ) ∈ Toset ∧ ( 𝑊 ↾s 𝐴 ) ∈ Mnd ) → ( ( 𝑊 ↾s 𝐴 ) ∈ Archi ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
60 |
55 56 59
|
syl2anc |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝐴 ) ∈ Archi ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝐴 ) ∈ Archi ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ( ( 0g ‘ ( 𝑊 ↾s 𝐴 ) ) ( lt ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ( le ‘ ( 𝑊 ↾s 𝐴 ) ) ( 𝑛 ( .g ‘ ( 𝑊 ↾s 𝐴 ) ) 𝑥 ) ) ) ) |
62 |
54 61
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Archi ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ Archi ) |