| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submrcl |
|- ( A e. ( SubMnd ` W ) -> W e. Mnd ) |
| 2 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 3 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 4 |
|
eqid |
|- ( .g ` W ) = ( .g ` W ) |
| 5 |
|
eqid |
|- ( le ` W ) = ( le ` W ) |
| 6 |
|
eqid |
|- ( lt ` W ) = ( lt ` W ) |
| 7 |
2 3 4 5 6
|
isarchi2 |
|- ( ( W e. Toset /\ W e. Mnd ) -> ( W e. Archi <-> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 8 |
1 7
|
sylan2 |
|- ( ( W e. Toset /\ A e. ( SubMnd ` W ) ) -> ( W e. Archi <-> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 9 |
8
|
biimpa |
|- ( ( ( W e. Toset /\ A e. ( SubMnd ` W ) ) /\ W e. Archi ) -> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) |
| 10 |
9
|
an32s |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) |
| 11 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
| 12 |
11
|
submbas |
|- ( A e. ( SubMnd ` W ) -> A = ( Base ` ( W |`s A ) ) ) |
| 13 |
2
|
submss |
|- ( A e. ( SubMnd ` W ) -> A C_ ( Base ` W ) ) |
| 14 |
12 13
|
eqsstrrd |
|- ( A e. ( SubMnd ` W ) -> ( Base ` ( W |`s A ) ) C_ ( Base ` W ) ) |
| 15 |
|
ssralv |
|- ( ( Base ` ( W |`s A ) ) C_ ( Base ` W ) -> ( A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 16 |
15
|
ralimdv |
|- ( ( Base ` ( W |`s A ) ) C_ ( Base ` W ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` W ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 17 |
|
ssralv |
|- ( ( Base ` ( W |`s A ) ) C_ ( Base ` W ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 18 |
16 17
|
syld |
|- ( ( Base ` ( W |`s A ) ) C_ ( Base ` W ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 19 |
14 18
|
syl |
|- ( A e. ( SubMnd ` W ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) ) ) |
| 21 |
11 3
|
subm0 |
|- ( A e. ( SubMnd ` W ) -> ( 0g ` W ) = ( 0g ` ( W |`s A ) ) ) |
| 22 |
21
|
ad2antrr |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> ( 0g ` W ) = ( 0g ` ( W |`s A ) ) ) |
| 23 |
11 5
|
ressle |
|- ( A e. ( SubMnd ` W ) -> ( le ` W ) = ( le ` ( W |`s A ) ) ) |
| 24 |
23
|
difeq1d |
|- ( A e. ( SubMnd ` W ) -> ( ( le ` W ) \ _I ) = ( ( le ` ( W |`s A ) ) \ _I ) ) |
| 25 |
5 6
|
pltfval |
|- ( W e. Mnd -> ( lt ` W ) = ( ( le ` W ) \ _I ) ) |
| 26 |
1 25
|
syl |
|- ( A e. ( SubMnd ` W ) -> ( lt ` W ) = ( ( le ` W ) \ _I ) ) |
| 27 |
11
|
submmnd |
|- ( A e. ( SubMnd ` W ) -> ( W |`s A ) e. Mnd ) |
| 28 |
|
eqid |
|- ( le ` ( W |`s A ) ) = ( le ` ( W |`s A ) ) |
| 29 |
|
eqid |
|- ( lt ` ( W |`s A ) ) = ( lt ` ( W |`s A ) ) |
| 30 |
28 29
|
pltfval |
|- ( ( W |`s A ) e. Mnd -> ( lt ` ( W |`s A ) ) = ( ( le ` ( W |`s A ) ) \ _I ) ) |
| 31 |
27 30
|
syl |
|- ( A e. ( SubMnd ` W ) -> ( lt ` ( W |`s A ) ) = ( ( le ` ( W |`s A ) ) \ _I ) ) |
| 32 |
24 26 31
|
3eqtr4d |
|- ( A e. ( SubMnd ` W ) -> ( lt ` W ) = ( lt ` ( W |`s A ) ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> ( lt ` W ) = ( lt ` ( W |`s A ) ) ) |
| 34 |
|
eqidd |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> x = x ) |
| 35 |
22 33 34
|
breq123d |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> ( ( 0g ` W ) ( lt ` W ) x <-> ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x ) ) |
| 36 |
|
eqidd |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> y = y ) |
| 37 |
23
|
ad3antrrr |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> ( le ` W ) = ( le ` ( W |`s A ) ) ) |
| 38 |
|
simplll |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> A e. ( SubMnd ` W ) ) |
| 39 |
|
simpr |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> n e. NN ) |
| 40 |
39
|
nnnn0d |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> n e. NN0 ) |
| 41 |
|
simpllr |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> x e. ( Base ` ( W |`s A ) ) ) |
| 42 |
38 12
|
syl |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> A = ( Base ` ( W |`s A ) ) ) |
| 43 |
41 42
|
eleqtrrd |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> x e. A ) |
| 44 |
|
eqid |
|- ( .g ` ( W |`s A ) ) = ( .g ` ( W |`s A ) ) |
| 45 |
4 11 44
|
submmulg |
|- ( ( A e. ( SubMnd ` W ) /\ n e. NN0 /\ x e. A ) -> ( n ( .g ` W ) x ) = ( n ( .g ` ( W |`s A ) ) x ) ) |
| 46 |
38 40 43 45
|
syl3anc |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> ( n ( .g ` W ) x ) = ( n ( .g ` ( W |`s A ) ) x ) ) |
| 47 |
36 37 46
|
breq123d |
|- ( ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) /\ n e. NN ) -> ( y ( le ` W ) ( n ( .g ` W ) x ) <-> y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) |
| 48 |
47
|
rexbidva |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> ( E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) <-> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) |
| 49 |
35 48
|
imbi12d |
|- ( ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) /\ y e. ( Base ` ( W |`s A ) ) ) -> ( ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) <-> ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 50 |
49
|
ralbidva |
|- ( ( A e. ( SubMnd ` W ) /\ x e. ( Base ` ( W |`s A ) ) ) -> ( A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) <-> A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 51 |
50
|
ralbidva |
|- ( A e. ( SubMnd ` W ) -> ( A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) <-> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 52 |
51
|
adantl |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> ( A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) <-> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 53 |
20 52
|
sylibd |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> ( A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( 0g ` W ) ( lt ` W ) x -> E. n e. NN y ( le ` W ) ( n ( .g ` W ) x ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 54 |
10 53
|
mpd |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) |
| 55 |
|
resstos |
|- ( ( W e. Toset /\ A e. ( SubMnd ` W ) ) -> ( W |`s A ) e. Toset ) |
| 56 |
27
|
adantl |
|- ( ( W e. Toset /\ A e. ( SubMnd ` W ) ) -> ( W |`s A ) e. Mnd ) |
| 57 |
|
eqid |
|- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
| 58 |
|
eqid |
|- ( 0g ` ( W |`s A ) ) = ( 0g ` ( W |`s A ) ) |
| 59 |
57 58 44 28 29
|
isarchi2 |
|- ( ( ( W |`s A ) e. Toset /\ ( W |`s A ) e. Mnd ) -> ( ( W |`s A ) e. Archi <-> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 60 |
55 56 59
|
syl2anc |
|- ( ( W e. Toset /\ A e. ( SubMnd ` W ) ) -> ( ( W |`s A ) e. Archi <-> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 61 |
60
|
adantlr |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> ( ( W |`s A ) e. Archi <-> A. x e. ( Base ` ( W |`s A ) ) A. y e. ( Base ` ( W |`s A ) ) ( ( 0g ` ( W |`s A ) ) ( lt ` ( W |`s A ) ) x -> E. n e. NN y ( le ` ( W |`s A ) ) ( n ( .g ` ( W |`s A ) ) x ) ) ) ) |
| 62 |
54 61
|
mpbird |
|- ( ( ( W e. Toset /\ W e. Archi ) /\ A e. ( SubMnd ` W ) ) -> ( W |`s A ) e. Archi ) |