| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submrcl |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
2 3 4 5 6
|
isarchi2 |
|
| 8 |
1 7
|
sylan2 |
|
| 9 |
8
|
biimpa |
|
| 10 |
9
|
an32s |
|
| 11 |
|
eqid |
|
| 12 |
11
|
submbas |
|
| 13 |
2
|
submss |
|
| 14 |
12 13
|
eqsstrrd |
|
| 15 |
|
ssralv |
|
| 16 |
15
|
ralimdv |
|
| 17 |
|
ssralv |
|
| 18 |
16 17
|
syld |
|
| 19 |
14 18
|
syl |
|
| 20 |
19
|
adantl |
|
| 21 |
11 3
|
subm0 |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
11 5
|
ressle |
|
| 24 |
23
|
difeq1d |
|
| 25 |
5 6
|
pltfval |
|
| 26 |
1 25
|
syl |
|
| 27 |
11
|
submmnd |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
28 29
|
pltfval |
|
| 31 |
27 30
|
syl |
|
| 32 |
24 26 31
|
3eqtr4d |
|
| 33 |
32
|
ad2antrr |
|
| 34 |
|
eqidd |
|
| 35 |
22 33 34
|
breq123d |
|
| 36 |
|
eqidd |
|
| 37 |
23
|
ad3antrrr |
|
| 38 |
|
simplll |
|
| 39 |
|
simpr |
|
| 40 |
39
|
nnnn0d |
|
| 41 |
|
simpllr |
|
| 42 |
38 12
|
syl |
|
| 43 |
41 42
|
eleqtrrd |
|
| 44 |
|
eqid |
|
| 45 |
4 11 44
|
submmulg |
|
| 46 |
38 40 43 45
|
syl3anc |
|
| 47 |
36 37 46
|
breq123d |
|
| 48 |
47
|
rexbidva |
|
| 49 |
35 48
|
imbi12d |
|
| 50 |
49
|
ralbidva |
|
| 51 |
50
|
ralbidva |
|
| 52 |
51
|
adantl |
|
| 53 |
20 52
|
sylibd |
|
| 54 |
10 53
|
mpd |
|
| 55 |
|
resstos |
|
| 56 |
27
|
adantl |
|
| 57 |
|
eqid |
|
| 58 |
|
eqid |
|
| 59 |
57 58 44 28 29
|
isarchi2 |
|
| 60 |
55 56 59
|
syl2anc |
|
| 61 |
60
|
adantlr |
|
| 62 |
54 61
|
mpbird |
|