| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isarchi3.b |
|
| 2 |
|
isarchi3.0 |
|
| 3 |
|
isarchi3.i |
|
| 4 |
|
isarchi3.x |
|
| 5 |
|
isogrp |
|
| 6 |
5
|
simprbi |
|
| 7 |
|
omndtos |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
grpmnd |
|
| 10 |
9
|
adantr |
|
| 11 |
5 10
|
sylbi |
|
| 12 |
|
eqid |
|
| 13 |
1 2 4 12 3
|
isarchi2 |
|
| 14 |
8 11 13
|
syl2anc |
|
| 15 |
|
simpr |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
peano2nnd |
|
| 18 |
|
simp-4l |
|
| 19 |
18
|
adantr |
|
| 20 |
|
ogrpgrp |
|
| 21 |
1 2
|
grpidcl |
|
| 22 |
19 20 21
|
3syl |
|
| 23 |
|
simp-4r |
|
| 24 |
23
|
adantr |
|
| 25 |
20
|
ad4antr |
|
| 26 |
15
|
nnzd |
|
| 27 |
1 4
|
mulgcl |
|
| 28 |
25 26 23 27
|
syl3anc |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpllr |
|
| 31 |
|
eqid |
|
| 32 |
1 3 31
|
ogrpaddlt |
|
| 33 |
19 22 24 29 30 32
|
syl131anc |
|
| 34 |
19 20
|
syl |
|
| 35 |
1 31 2
|
grplid |
|
| 36 |
34 29 35
|
syl2anc |
|
| 37 |
|
nncn |
|
| 38 |
|
ax-1cn |
|
| 39 |
|
addcom |
|
| 40 |
37 38 39
|
sylancl |
|
| 41 |
40
|
oveq1d |
|
| 42 |
16 41
|
syl |
|
| 43 |
|
grpsgrp |
|
| 44 |
19 20 43
|
3syl |
|
| 45 |
|
1nn |
|
| 46 |
45
|
a1i |
|
| 47 |
1 4 31
|
mulgnndir |
|
| 48 |
44 46 16 24 47
|
syl13anc |
|
| 49 |
1 4
|
mulg1 |
|
| 50 |
24 49
|
syl |
|
| 51 |
50
|
oveq1d |
|
| 52 |
42 48 51
|
3eqtrrd |
|
| 53 |
33 36 52
|
3brtr3d |
|
| 54 |
|
tospos |
|
| 55 |
18 8 54
|
3syl |
|
| 56 |
|
simpllr |
|
| 57 |
26
|
peano2zd |
|
| 58 |
1 4
|
mulgcl |
|
| 59 |
25 57 23 58
|
syl3anc |
|
| 60 |
1 12 3
|
plelttr |
|
| 61 |
55 56 28 59 60
|
syl13anc |
|
| 62 |
61
|
impl |
|
| 63 |
53 62
|
mpdan |
|
| 64 |
|
oveq1 |
|
| 65 |
64
|
breq2d |
|
| 66 |
65
|
rspcev |
|
| 67 |
17 63 66
|
syl2anc |
|
| 68 |
67
|
r19.29an |
|
| 69 |
|
oveq1 |
|
| 70 |
69
|
breq2d |
|
| 71 |
70
|
cbvrexvw |
|
| 72 |
68 71
|
sylib |
|
| 73 |
12 3
|
pltle |
|
| 74 |
18 56 28 73
|
syl3anc |
|
| 75 |
74
|
reximdva |
|
| 76 |
75
|
imp |
|
| 77 |
72 76
|
impbida |
|
| 78 |
77
|
pm5.74da |
|
| 79 |
78
|
ralbidva |
|
| 80 |
79
|
ralbidva |
|
| 81 |
14 80
|
bitrd |
|