Step |
Hyp |
Ref |
Expression |
1 |
|
archirng.b |
|
2 |
|
archirng.0 |
|
3 |
|
archirng.i |
|
4 |
|
archirng.l |
|
5 |
|
archirng.x |
|
6 |
|
archirng.1 |
|
7 |
|
archirng.2 |
|
8 |
|
archirng.3 |
|
9 |
|
archirng.4 |
|
10 |
|
archirng.5 |
|
11 |
|
archirng.6 |
|
12 |
|
oveq1 |
|
13 |
12
|
breq2d |
|
14 |
|
oveq1 |
|
15 |
14
|
breq2d |
|
16 |
|
oveq1 |
|
17 |
16
|
breq2d |
|
18 |
|
isogrp |
|
19 |
18
|
simprbi |
|
20 |
|
omndtos |
|
21 |
6 19 20
|
3syl |
|
22 |
|
ogrpgrp |
|
23 |
6 22
|
syl |
|
24 |
1 2
|
grpidcl |
|
25 |
23 24
|
syl |
|
26 |
1 4 3
|
tltnle |
|
27 |
21 25 9 26
|
syl3anc |
|
28 |
11 27
|
mpbid |
|
29 |
1 2 5
|
mulg0 |
|
30 |
8 29
|
syl |
|
31 |
30
|
breq2d |
|
32 |
28 31
|
mtbird |
|
33 |
8 9
|
jca |
|
34 |
|
omndmnd |
|
35 |
6 19 34
|
3syl |
|
36 |
1 2 5 4 3
|
isarchi2 |
|
37 |
36
|
biimpa |
|
38 |
21 35 7 37
|
syl21anc |
|
39 |
|
breq2 |
|
40 |
|
oveq2 |
|
41 |
40
|
breq2d |
|
42 |
41
|
rexbidv |
|
43 |
39 42
|
imbi12d |
|
44 |
|
breq1 |
|
45 |
44
|
rexbidv |
|
46 |
45
|
imbi2d |
|
47 |
43 46
|
rspc2v |
|
48 |
33 38 10 47
|
syl3c |
|
49 |
13 15 17 32 48
|
nn0min |
|
50 |
21
|
adantr |
|
51 |
23
|
adantr |
|
52 |
|
simpr |
|
53 |
52
|
nn0zd |
|
54 |
8
|
adantr |
|
55 |
1 5
|
mulgcl |
|
56 |
51 53 54 55
|
syl3anc |
|
57 |
9
|
adantr |
|
58 |
1 4 3
|
tltnle |
|
59 |
50 56 57 58
|
syl3anc |
|
60 |
59
|
anbi1d |
|
61 |
60
|
rexbidva |
|
62 |
49 61
|
mpbird |
|