Step |
Hyp |
Ref |
Expression |
1 |
|
archirng.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
archirng.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
archirng.i |
⊢ < = ( lt ‘ 𝑊 ) |
4 |
|
archirng.l |
⊢ ≤ = ( le ‘ 𝑊 ) |
5 |
|
archirng.x |
⊢ · = ( .g ‘ 𝑊 ) |
6 |
|
archirng.1 |
⊢ ( 𝜑 → 𝑊 ∈ oGrp ) |
7 |
|
archirng.2 |
⊢ ( 𝜑 → 𝑊 ∈ Archi ) |
8 |
|
archirng.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
archirng.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
archirng.5 |
⊢ ( 𝜑 → 0 < 𝑋 ) |
11 |
|
archirng.6 |
⊢ ( 𝜑 → 0 < 𝑌 ) |
12 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) |
13 |
12
|
breq2d |
⊢ ( 𝑚 = 0 → ( 𝑌 ≤ ( 𝑚 · 𝑋 ) ↔ 𝑌 ≤ ( 0 · 𝑋 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑌 ≤ ( 𝑚 · 𝑋 ) ↔ 𝑌 ≤ ( 𝑛 · 𝑋 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑌 ≤ ( 𝑚 · 𝑋 ) ↔ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
18 |
|
isogrp |
⊢ ( 𝑊 ∈ oGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd ) ) |
19 |
18
|
simprbi |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ oMnd ) |
20 |
|
omndtos |
⊢ ( 𝑊 ∈ oMnd → 𝑊 ∈ Toset ) |
21 |
6 19 20
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Toset ) |
22 |
|
ogrpgrp |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp ) |
23 |
6 22
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
24 |
1 2
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝐵 ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
26 |
1 4 3
|
tltnle |
⊢ ( ( 𝑊 ∈ Toset ∧ 0 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 < 𝑌 ↔ ¬ 𝑌 ≤ 0 ) ) |
27 |
21 25 9 26
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 ≤ 0 ) ) |
28 |
11 27
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑌 ≤ 0 ) |
29 |
1 2 5
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
30 |
8 29
|
syl |
⊢ ( 𝜑 → ( 0 · 𝑋 ) = 0 ) |
31 |
30
|
breq2d |
⊢ ( 𝜑 → ( 𝑌 ≤ ( 0 · 𝑋 ) ↔ 𝑌 ≤ 0 ) ) |
32 |
28 31
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑌 ≤ ( 0 · 𝑋 ) ) |
33 |
8 9
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
34 |
|
omndmnd |
⊢ ( 𝑊 ∈ oMnd → 𝑊 ∈ Mnd ) |
35 |
6 19 34
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
36 |
1 2 5 4 3
|
isarchi2 |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ) ) ) |
37 |
36
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑊 ∈ Archi ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ) ) |
38 |
21 35 7 37
|
syl21anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ) ) |
39 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑚 · 𝑥 ) = ( 𝑚 · 𝑋 ) ) |
41 |
40
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ≤ ( 𝑚 · 𝑥 ) ↔ 𝑦 ≤ ( 𝑚 · 𝑋 ) ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑋 ) ) ) |
43 |
39 42
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 0 < 𝑥 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ) ↔ ( 0 < 𝑋 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑋 ) ) ) ) |
44 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≤ ( 𝑚 · 𝑋 ) ↔ 𝑌 ≤ ( 𝑚 · 𝑋 ) ) ) |
45 |
44
|
rexbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑋 ) ↔ ∃ 𝑚 ∈ ℕ 𝑌 ≤ ( 𝑚 · 𝑋 ) ) ) |
46 |
45
|
imbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 0 < 𝑋 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑋 ) ) ↔ ( 0 < 𝑋 → ∃ 𝑚 ∈ ℕ 𝑌 ≤ ( 𝑚 · 𝑋 ) ) ) ) |
47 |
43 46
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑚 ∈ ℕ 𝑦 ≤ ( 𝑚 · 𝑥 ) ) → ( 0 < 𝑋 → ∃ 𝑚 ∈ ℕ 𝑌 ≤ ( 𝑚 · 𝑋 ) ) ) ) |
48 |
33 38 10 47
|
syl3c |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ 𝑌 ≤ ( 𝑚 · 𝑋 ) ) |
49 |
13 15 17 32 48
|
nn0min |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( ¬ 𝑌 ≤ ( 𝑛 · 𝑋 ) ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
50 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑊 ∈ Toset ) |
51 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑊 ∈ Grp ) |
52 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
53 |
52
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
54 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
55 |
1 5
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
56 |
51 53 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
57 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
58 |
1 4 3
|
tltnle |
⊢ ( ( 𝑊 ∈ Toset ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑛 · 𝑋 ) < 𝑌 ↔ ¬ 𝑌 ≤ ( 𝑛 · 𝑋 ) ) ) |
59 |
50 56 57 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 · 𝑋 ) < 𝑌 ↔ ¬ 𝑌 ≤ ( 𝑛 · 𝑋 ) ) ) |
60 |
59
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ↔ ( ¬ 𝑌 ≤ ( 𝑛 · 𝑋 ) ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) ) |
61 |
60
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ↔ ∃ 𝑛 ∈ ℕ0 ( ¬ 𝑌 ≤ ( 𝑛 · 𝑋 ) ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) ) |
62 |
49 61
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |