Step |
Hyp |
Ref |
Expression |
1 |
|
isarchi2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
isarchi2.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
isarchi2.x |
⊢ · = ( .g ‘ 𝑊 ) |
4 |
|
isarchi2.l |
⊢ ≤ = ( le ‘ 𝑊 ) |
5 |
|
isarchi2.t |
⊢ < = ( lt ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ⋘ ‘ 𝑊 ) = ( ⋘ ‘ 𝑊 ) |
7 |
1 2 6
|
isarchi |
⊢ ( 𝑊 ∈ Toset → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ) ) |
9 |
|
simpl1l |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ Toset ) |
10 |
|
simpl1r |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ Mnd ) |
11 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
12 |
11
|
nnnn0d |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
13 |
|
simpl2 |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ 𝐵 ) |
14 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
15 |
10 12 13 14
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · 𝑥 ) ∈ 𝐵 ) |
16 |
|
simpl3 |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑦 ∈ 𝐵 ) |
17 |
1 4 5
|
tltnle |
⊢ ( ( 𝑊 ∈ Toset ∧ ( 𝑛 · 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑛 · 𝑥 ) < 𝑦 ↔ ¬ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ) |
18 |
17
|
con2bid |
⊢ ( ( 𝑊 ∈ Toset ∧ ( 𝑛 · 𝑥 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ≤ ( 𝑛 · 𝑥 ) ↔ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
19 |
9 15 16 18
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑦 ≤ ( 𝑛 · 𝑥 ) ↔ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
20 |
19
|
rexbidva |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
21 |
20
|
imbi2d |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ↔ ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) ) |
22 |
1 2 3 5
|
isinftm |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ↔ ( 0 < 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ) ) |
23 |
22
|
notbid |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ↔ ¬ ( 0 < 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ) ) |
24 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ↔ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) |
25 |
24
|
imbi2i |
⊢ ( ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ↔ ( 0 < 𝑥 → ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
26 |
|
imnan |
⊢ ( ( 0 < 𝑥 → ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ↔ ¬ ( 0 < 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
27 |
25 26
|
bitr2i |
⊢ ( ¬ ( 0 < 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 · 𝑥 ) < 𝑦 ) ↔ ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) |
28 |
23 27
|
bitrdi |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ↔ ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) ) |
29 |
28
|
3adant1r |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ↔ ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 · 𝑥 ) < 𝑦 ) ) ) |
30 |
21 29
|
bitr4d |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ↔ ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ) ) |
31 |
30
|
3expb |
⊢ ( ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ↔ ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ) ) |
32 |
31
|
2ralbidva |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ( ⋘ ‘ 𝑊 ) 𝑦 ) ) |
33 |
8 32
|
bitr4d |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd ) → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 ≤ ( 𝑛 · 𝑥 ) ) ) ) |