Step |
Hyp |
Ref |
Expression |
1 |
|
archirng.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
archirng.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
archirng.i |
⊢ < = ( lt ‘ 𝑊 ) |
4 |
|
archirng.l |
⊢ ≤ = ( le ‘ 𝑊 ) |
5 |
|
archirng.x |
⊢ · = ( .g ‘ 𝑊 ) |
6 |
|
archirng.1 |
⊢ ( 𝜑 → 𝑊 ∈ oGrp ) |
7 |
|
archirng.2 |
⊢ ( 𝜑 → 𝑊 ∈ Archi ) |
8 |
|
archirng.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
archirng.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
archirng.5 |
⊢ ( 𝜑 → 0 < 𝑋 ) |
11 |
|
archirngz.1 |
⊢ ( 𝜑 → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
12 |
|
neg1z |
⊢ - 1 ∈ ℤ |
13 |
|
ogrpgrp |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ Grp ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
15 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
17 |
1 5 16
|
mulgneg |
⊢ ( ( 𝑊 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 1 · 𝑋 ) ) ) |
18 |
14 15 8 17
|
syl3anc |
⊢ ( 𝜑 → ( - 1 · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 1 · 𝑋 ) ) ) |
19 |
1 5
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ ( 1 · 𝑋 ) ) = ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) ) |
22 |
18 21
|
eqtrd |
⊢ ( 𝜑 → ( - 1 · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) ) |
23 |
1 3 16 2
|
ogrpinv0lt |
⊢ ( ( 𝑊 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) < 0 ) ) |
24 |
23
|
biimpa |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) < 0 ) |
25 |
6 8 10 24
|
syl21anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) < 0 ) |
26 |
22 25
|
eqbrtrd |
⊢ ( 𝜑 → ( - 1 · 𝑋 ) < 0 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( - 1 · 𝑋 ) < 0 ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
29 |
27 28
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( - 1 · 𝑋 ) < 𝑌 ) |
30 |
|
isogrp |
⊢ ( 𝑊 ∈ oGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd ) ) |
31 |
30
|
simprbi |
⊢ ( 𝑊 ∈ oGrp → 𝑊 ∈ oMnd ) |
32 |
|
omndtos |
⊢ ( 𝑊 ∈ oMnd → 𝑊 ∈ Toset ) |
33 |
6 31 32
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Toset ) |
34 |
|
tospos |
⊢ ( 𝑊 ∈ Toset → 𝑊 ∈ Poset ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Poset ) |
36 |
1 2
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝐵 ) |
37 |
6 13 36
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
38 |
1 4
|
posref |
⊢ ( ( 𝑊 ∈ Poset ∧ 0 ∈ 𝐵 ) → 0 ≤ 0 ) |
39 |
35 37 38
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ 0 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 0 ≤ 0 ) |
41 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
42 |
41
|
negeqi |
⊢ - ( 1 − 1 ) = - 0 |
43 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
44 |
43 43
|
negsubdii |
⊢ - ( 1 − 1 ) = ( - 1 + 1 ) |
45 |
|
neg0 |
⊢ - 0 = 0 |
46 |
42 44 45
|
3eqtr3i |
⊢ ( - 1 + 1 ) = 0 |
47 |
46
|
oveq1i |
⊢ ( ( - 1 + 1 ) · 𝑋 ) = ( 0 · 𝑋 ) |
48 |
1 2 5
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
49 |
8 48
|
syl |
⊢ ( 𝜑 → ( 0 · 𝑋 ) = 0 ) |
50 |
47 49
|
syl5eq |
⊢ ( 𝜑 → ( ( - 1 + 1 ) · 𝑋 ) = 0 ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( ( - 1 + 1 ) · 𝑋 ) = 0 ) |
52 |
40 28 51
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑌 ≤ ( ( - 1 + 1 ) · 𝑋 ) ) |
53 |
29 52
|
jca |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( ( - 1 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( - 1 + 1 ) · 𝑋 ) ) ) |
54 |
|
oveq1 |
⊢ ( 𝑛 = - 1 → ( 𝑛 · 𝑋 ) = ( - 1 · 𝑋 ) ) |
55 |
54
|
breq1d |
⊢ ( 𝑛 = - 1 → ( ( 𝑛 · 𝑋 ) < 𝑌 ↔ ( - 1 · 𝑋 ) < 𝑌 ) ) |
56 |
|
oveq1 |
⊢ ( 𝑛 = - 1 → ( 𝑛 + 1 ) = ( - 1 + 1 ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝑛 = - 1 → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( - 1 + 1 ) · 𝑋 ) ) |
58 |
57
|
breq2d |
⊢ ( 𝑛 = - 1 → ( 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ↔ 𝑌 ≤ ( ( - 1 + 1 ) · 𝑋 ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑛 = - 1 → ( ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ↔ ( ( - 1 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( - 1 + 1 ) · 𝑋 ) ) ) ) |
60 |
59
|
rspcev |
⊢ ( ( - 1 ∈ ℤ ∧ ( ( - 1 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( - 1 + 1 ) · 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
61 |
12 53 60
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
62 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
63 |
62
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℤ ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → 𝑚 ∈ ℤ ) |
65 |
64
|
znegcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → - 𝑚 ∈ ℤ ) |
66 |
|
2z |
⊢ 2 ∈ ℤ |
67 |
66
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → 2 ∈ ℤ ) |
68 |
65 67
|
zsubcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( - 𝑚 − 2 ) ∈ ℤ ) |
69 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
71 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 2 ∈ ℂ ) |
72 |
70 71
|
negdi2d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → - ( 𝑚 + 2 ) = ( - 𝑚 − 2 ) ) |
73 |
72
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 2 ) · 𝑋 ) = ( ( - 𝑚 − 2 ) · 𝑋 ) ) |
74 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑊 ∈ oGrp ) |
75 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
76 |
74 75
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ) |
77 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑊 ∈ Grp ) |
78 |
63
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℤ ) |
79 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
80 |
1 5
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
81 |
77 78 79 80
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
82 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 2 ∈ ℤ ) |
83 |
63 82
|
zaddcld |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 2 ) ∈ ℤ ) |
84 |
1 5
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑚 + 2 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑚 + 2 ) · 𝑋 ) ∈ 𝐵 ) |
85 |
77 83 79 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 2 ) · 𝑋 ) ∈ 𝐵 ) |
86 |
77 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 0 ∈ 𝐵 ) |
87 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 0 < 𝑋 ) |
88 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
89 |
1 3 88
|
ogrpaddlt |
⊢ ( ( 𝑊 ∈ oGrp ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
90 |
74 86 79 81 87 89
|
syl131anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
91 |
1 88 2
|
grplid |
⊢ ( ( 𝑊 ∈ Grp ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) · 𝑋 ) ) |
92 |
77 81 91
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) · 𝑋 ) ) |
93 |
|
1cnd |
⊢ ( 𝑚 ∈ ℕ0 → 1 ∈ ℂ ) |
94 |
69 93 93
|
addassd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) = ( 𝑚 + ( 1 + 1 ) ) ) |
95 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
96 |
95
|
oveq2i |
⊢ ( 𝑚 + ( 1 + 1 ) ) = ( 𝑚 + 2 ) |
97 |
94 96
|
eqtrdi |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) = ( 𝑚 + 2 ) ) |
98 |
69 93
|
addcld |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℂ ) |
99 |
98 93
|
addcomd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 1 ) + 1 ) = ( 1 + ( 𝑚 + 1 ) ) ) |
100 |
97 99
|
eqtr3d |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 2 ) = ( 1 + ( 𝑚 + 1 ) ) ) |
101 |
100
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑚 + 2 ) · 𝑋 ) = ( ( 1 + ( 𝑚 + 1 ) ) · 𝑋 ) ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 2 ) · 𝑋 ) = ( ( 1 + ( 𝑚 + 1 ) ) · 𝑋 ) ) |
103 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 1 ∈ ℤ ) |
104 |
1 5 88
|
mulgdir |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 1 ∈ ℤ ∧ ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 1 + ( 𝑚 + 1 ) ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
105 |
77 103 78 79 104
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 + ( 𝑚 + 1 ) ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
106 |
79 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 1 · 𝑋 ) = 𝑋 ) |
107 |
106
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
108 |
102 105 107
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 2 ) · 𝑋 ) ) |
109 |
90 92 108
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑋 ) < ( ( 𝑚 + 2 ) · 𝑋 ) ) |
110 |
1 3 16
|
ogrpinvlt |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑚 + 2 ) · 𝑋 ) ∈ 𝐵 ) → ( ( ( 𝑚 + 1 ) · 𝑋 ) < ( ( 𝑚 + 2 ) · 𝑋 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 2 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ) |
111 |
110
|
biimpa |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑚 + 2 ) · 𝑋 ) ∈ 𝐵 ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) < ( ( 𝑚 + 2 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 2 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
112 |
76 81 85 109 111
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 2 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
113 |
1 5 16
|
mulgneg |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑚 + 2 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - ( 𝑚 + 2 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 2 ) · 𝑋 ) ) ) |
114 |
77 83 79 113
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 2 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 2 ) · 𝑋 ) ) ) |
115 |
1 5 16
|
mulgneg |
⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑚 + 1 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - ( 𝑚 + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
116 |
77 78 79 115
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
117 |
112 114 116
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 2 ) · 𝑋 ) < ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
118 |
73 117
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( - 𝑚 − 2 ) · 𝑋 ) < ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
119 |
118
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( - 𝑚 − 2 ) · 𝑋 ) < ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
120 |
116
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( - ( 𝑚 + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
121 |
35
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → 𝑊 ∈ Poset ) |
122 |
1 16
|
grpinvcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
123 |
14 9 122
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
125 |
124
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
126 |
81
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
127 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) |
128 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) |
129 |
1 4
|
posasymb |
⊢ ( ( 𝑊 ∈ Poset ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ↔ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) = ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
130 |
129
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Poset ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) ∧ ( ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) = ( ( 𝑚 + 1 ) · 𝑋 ) ) |
131 |
121 125 126 127 128 130
|
syl32anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) = ( ( 𝑚 + 1 ) · 𝑋 ) ) |
132 |
131
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
133 |
1 16
|
grpinvinv |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) = 𝑌 ) |
134 |
14 9 133
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) = 𝑌 ) |
135 |
134
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) = 𝑌 ) |
136 |
120 132 135
|
3eqtr2rd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → 𝑌 = ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
137 |
119 136
|
breqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( - 𝑚 − 2 ) · 𝑋 ) < 𝑌 ) |
138 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 1 ∈ ℂ ) |
139 |
70 71 138
|
addsubassd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 2 ) − 1 ) = ( 𝑚 + ( 2 − 1 ) ) ) |
140 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
141 |
140
|
oveq2i |
⊢ ( 𝑚 + ( 2 − 1 ) ) = ( 𝑚 + 1 ) |
142 |
139 141
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 1 ) = ( ( 𝑚 + 2 ) − 1 ) ) |
143 |
142
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → - ( 𝑚 + 1 ) = - ( ( 𝑚 + 2 ) − 1 ) ) |
144 |
70 71
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 + 2 ) ∈ ℂ ) |
145 |
144 138
|
negsubdid |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → - ( ( 𝑚 + 2 ) − 1 ) = ( - ( 𝑚 + 2 ) + 1 ) ) |
146 |
72
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 2 ) + 1 ) = ( ( - 𝑚 − 2 ) + 1 ) ) |
147 |
143 145 146
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( - 𝑚 − 2 ) + 1 ) = - ( 𝑚 + 1 ) ) |
148 |
147
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) = ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
149 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑊 ∈ Toset ) |
150 |
149 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑊 ∈ Poset ) |
151 |
63
|
znegcld |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → - 𝑚 ∈ ℤ ) |
152 |
151 82
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - 𝑚 − 2 ) ∈ ℤ ) |
153 |
152
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( - 𝑚 − 2 ) + 1 ) ∈ ℤ ) |
154 |
1 5
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ ( ( - 𝑚 − 2 ) + 1 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ∈ 𝐵 ) |
155 |
77 153 79 154
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ∈ 𝐵 ) |
156 |
1 4
|
posref |
⊢ ( ( 𝑊 ∈ Poset ∧ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ∈ 𝐵 ) → ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
157 |
150 155 156
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
158 |
148 157
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
159 |
158
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( - ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
160 |
136 159
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → 𝑌 ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
161 |
|
oveq1 |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( 𝑛 · 𝑋 ) = ( ( - 𝑚 − 2 ) · 𝑋 ) ) |
162 |
161
|
breq1d |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( ( 𝑛 · 𝑋 ) < 𝑌 ↔ ( ( - 𝑚 − 2 ) · 𝑋 ) < 𝑌 ) ) |
163 |
|
oveq1 |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( 𝑛 + 1 ) = ( ( - 𝑚 − 2 ) + 1 ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) |
165 |
164
|
breq2d |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ↔ 𝑌 ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) ) |
166 |
162 165
|
anbi12d |
⊢ ( 𝑛 = ( - 𝑚 − 2 ) → ( ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ↔ ( ( ( - 𝑚 − 2 ) · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) ) ) |
167 |
166
|
rspcev |
⊢ ( ( ( - 𝑚 − 2 ) ∈ ℤ ∧ ( ( ( - 𝑚 − 2 ) · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( ( - 𝑚 − 2 ) + 1 ) · 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
168 |
68 137 160 167
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
169 |
78
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( 𝑚 + 1 ) ∈ ℤ ) |
170 |
169
|
znegcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → - ( 𝑚 + 1 ) ∈ ℤ ) |
171 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → 𝑊 ∈ oGrp ) |
172 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → ( oppg ‘ 𝑊 ) ∈ oGrp ) |
173 |
171 172
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ) |
174 |
173
|
3anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ) |
175 |
124
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
176 |
81
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
177 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) |
178 |
1 3 16
|
ogrpinvlt |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) ) |
179 |
178
|
biimpa |
⊢ ( ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) |
180 |
174 175 176 177 179
|
syl31anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) ) |
181 |
116
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( - ( 𝑚 + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
182 |
181
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
183 |
134
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) = 𝑌 ) |
184 |
180 182 183
|
3brtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( - ( 𝑚 + 1 ) · 𝑋 ) < 𝑌 ) |
185 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → 𝜑 ) |
186 |
1 5
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
187 |
77 63 79 186
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
188 |
1 3 16
|
ogrpinvlt |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ ( oppg ‘ 𝑊 ) ∈ oGrp ) ∧ ( 𝑚 · 𝑋 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) ) |
189 |
76 187 124 188
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) ) |
190 |
189
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
191 |
190
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
192 |
191
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
193 |
|
negdi |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝑚 + 1 ) = ( - 𝑚 + - 1 ) ) |
194 |
69 43 193
|
sylancl |
⊢ ( 𝑚 ∈ ℕ0 → - ( 𝑚 + 1 ) = ( - 𝑚 + - 1 ) ) |
195 |
194
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( - ( 𝑚 + 1 ) + 1 ) = ( ( - 𝑚 + - 1 ) + 1 ) ) |
196 |
69
|
negcld |
⊢ ( 𝑚 ∈ ℕ0 → - 𝑚 ∈ ℂ ) |
197 |
93
|
negcld |
⊢ ( 𝑚 ∈ ℕ0 → - 1 ∈ ℂ ) |
198 |
196 197 93
|
addassd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 𝑚 + - 1 ) + 1 ) = ( - 𝑚 + ( - 1 + 1 ) ) ) |
199 |
46
|
oveq2i |
⊢ ( - 𝑚 + ( - 1 + 1 ) ) = ( - 𝑚 + 0 ) |
200 |
199
|
a1i |
⊢ ( 𝑚 ∈ ℕ0 → ( - 𝑚 + ( - 1 + 1 ) ) = ( - 𝑚 + 0 ) ) |
201 |
196
|
addid1d |
⊢ ( 𝑚 ∈ ℕ0 → ( - 𝑚 + 0 ) = - 𝑚 ) |
202 |
198 200 201
|
3eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - 𝑚 + - 1 ) + 1 ) = - 𝑚 ) |
203 |
195 202
|
eqtrd |
⊢ ( 𝑚 ∈ ℕ0 → ( - ( 𝑚 + 1 ) + 1 ) = - 𝑚 ) |
204 |
203
|
oveq1d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) = ( - 𝑚 · 𝑋 ) ) |
205 |
204
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) = ( - 𝑚 · 𝑋 ) ) |
206 |
1 5 16
|
mulgneg |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑚 · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
207 |
77 63 79 206
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( - 𝑚 · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
208 |
205 207
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
209 |
208
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) ) |
210 |
209
|
eqcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑚 · 𝑋 ) ) = ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) |
211 |
192 183 210
|
3brtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → 𝑌 < ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) |
212 |
|
ovexd |
⊢ ( 𝜑 → ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ∈ V ) |
213 |
4 3
|
pltle |
⊢ ( ( 𝑊 ∈ oGrp ∧ 𝑌 ∈ 𝐵 ∧ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ∈ V ) → ( 𝑌 < ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) → 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) ) |
214 |
6 9 212 213
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 < ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) → 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) ) |
215 |
185 211 214
|
sylc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) |
216 |
|
oveq1 |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( 𝑛 · 𝑋 ) = ( - ( 𝑚 + 1 ) · 𝑋 ) ) |
217 |
216
|
breq1d |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( ( 𝑛 · 𝑋 ) < 𝑌 ↔ ( - ( 𝑚 + 1 ) · 𝑋 ) < 𝑌 ) ) |
218 |
|
oveq1 |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( 𝑛 + 1 ) = ( - ( 𝑚 + 1 ) + 1 ) ) |
219 |
218
|
oveq1d |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) |
220 |
219
|
breq2d |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ↔ 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) ) |
221 |
217 220
|
anbi12d |
⊢ ( 𝑛 = - ( 𝑚 + 1 ) → ( ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ↔ ( ( - ( 𝑚 + 1 ) · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) ) ) |
222 |
221
|
rspcev |
⊢ ( ( - ( 𝑚 + 1 ) ∈ ℤ ∧ ( ( - ( 𝑚 + 1 ) · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( - ( 𝑚 + 1 ) + 1 ) · 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
223 |
170 184 215 222
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
224 |
1 4 3
|
tlt2 |
⊢ ( ( 𝑊 ∈ Toset ∧ ( ( 𝑚 + 1 ) · 𝑋 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∨ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
225 |
149 81 124 224
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∨ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
226 |
225
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → ( ( ( 𝑚 + 1 ) · 𝑋 ) ≤ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∨ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) < ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
227 |
168 223 226
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0 ) ∧ ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
228 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → 𝑊 ∈ oGrp ) |
229 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → 𝑊 ∈ Archi ) |
230 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → 𝑋 ∈ 𝐵 ) |
231 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) |
232 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → 0 < 𝑋 ) |
233 |
134
|
breq1d |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < 0 ↔ 𝑌 < 0 ) ) |
234 |
233
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < 0 ) |
235 |
1 3 16 2
|
ogrpinv0lt |
⊢ ( ( 𝑊 ∈ oGrp ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 0 < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < 0 ) ) |
236 |
6 123 235
|
syl2anc |
⊢ ( 𝜑 → ( 0 < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < 0 ) ) |
237 |
236
|
biimpar |
⊢ ( ( 𝜑 ∧ ( ( invg ‘ 𝑊 ) ‘ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) < 0 ) → 0 < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) |
238 |
234 237
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → 0 < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ) |
239 |
1 2 3 4 5 228 229 230 231 232 238
|
archirng |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → ∃ 𝑚 ∈ ℕ0 ( ( 𝑚 · 𝑋 ) < ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ∧ ( ( invg ‘ 𝑊 ) ‘ 𝑌 ) ≤ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) |
240 |
227 239
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑌 < 0 ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
241 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
242 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 𝑊 ∈ oGrp ) |
243 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 𝑊 ∈ Archi ) |
244 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 𝑋 ∈ 𝐵 ) |
245 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 𝑌 ∈ 𝐵 ) |
246 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 0 < 𝑋 ) |
247 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → 0 < 𝑌 ) |
248 |
1 2 3 4 5 242 243 244 245 246 247
|
archirng |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → ∃ 𝑛 ∈ ℕ0 ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
249 |
|
ssrexv |
⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ0 ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) ) |
250 |
241 248 249
|
mpsyl |
⊢ ( ( 𝜑 ∧ 0 < 𝑌 ) → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
251 |
1 3
|
tlt3 |
⊢ ( ( 𝑊 ∈ Toset ∧ 𝑌 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑌 = 0 ∨ 𝑌 < 0 ∨ 0 < 𝑌 ) ) |
252 |
33 9 37 251
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 = 0 ∨ 𝑌 < 0 ∨ 0 < 𝑌 ) ) |
253 |
61 240 250 252
|
mpjao3dan |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℤ ( ( 𝑛 · 𝑋 ) < 𝑌 ∧ 𝑌 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |