Step |
Hyp |
Ref |
Expression |
1 |
|
tlt3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
tlt3.l |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
4 |
1 3 2
|
tlt2 |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∨ 𝑌 < 𝑋 ) ) |
5 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
6 |
1 3 2
|
pleval2 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
7 |
|
orcom |
⊢ ( ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ↔ ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ) |
8 |
6 7
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ) ) |
9 |
5 8
|
syl3an1 |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ) ) |
10 |
9
|
orbi1d |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∨ 𝑌 < 𝑋 ) ↔ ( ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ∨ 𝑌 < 𝑋 ) ) ) |
11 |
4 10
|
mpbid |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ∨ 𝑌 < 𝑋 ) ) |
12 |
|
df-3or |
⊢ ( ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋 ) ↔ ( ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ) ∨ 𝑌 < 𝑋 ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋 ) ) |