Step |
Hyp |
Ref |
Expression |
1 |
|
archiexdiv.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
archiexdiv.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
archiexdiv.i |
⊢ < = ( lt ‘ 𝑊 ) |
4 |
|
archiexdiv.x |
⊢ · = ( .g ‘ 𝑊 ) |
5 |
1 2 3 4
|
isarchi3 |
⊢ ( 𝑊 ∈ oGrp → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) ) |
8 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 0 < 𝑋 ) |
9 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑋 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 < ( 𝑛 · 𝑥 ) ↔ 𝑦 < ( 𝑛 · 𝑋 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ↔ ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑋 ) ) ) |
13 |
9 12
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) ↔ ( 0 < 𝑋 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑋 ) ) ) ) |
14 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 < ( 𝑛 · 𝑋 ) ↔ 𝑌 < ( 𝑛 · 𝑋 ) ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑋 ) ↔ ∃ 𝑛 ∈ ℕ 𝑌 < ( 𝑛 · 𝑋 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑦 = 𝑌 → ( ( 0 < 𝑋 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑋 ) ) ↔ ( 0 < 𝑋 → ∃ 𝑛 ∈ ℕ 𝑌 < ( 𝑛 · 𝑋 ) ) ) ) |
17 |
13 16
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) → ( 0 < 𝑋 → ∃ 𝑛 ∈ ℕ 𝑌 < ( 𝑛 · 𝑋 ) ) ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃ 𝑛 ∈ ℕ 𝑦 < ( 𝑛 · 𝑥 ) ) → ( 0 < 𝑋 → ∃ 𝑛 ∈ ℕ 𝑌 < ( 𝑛 · 𝑋 ) ) ) ) |
19 |
7 8 18
|
mp2d |
⊢ ( ( ( 𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ∃ 𝑛 ∈ ℕ 𝑌 < ( 𝑛 · 𝑋 ) ) |