Metamath Proof Explorer


Theorem ogrpinv0lt

Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpinvlt.0 𝐵 = ( Base ‘ 𝐺 )
ogrpinvlt.1 < = ( lt ‘ 𝐺 )
ogrpinvlt.2 𝐼 = ( invg𝐺 )
ogrpinv0lt.3 0 = ( 0g𝐺 )
Assertion ogrpinv0lt ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) → ( 0 < 𝑋 ↔ ( 𝐼𝑋 ) < 0 ) )

Proof

Step Hyp Ref Expression
1 ogrpinvlt.0 𝐵 = ( Base ‘ 𝐺 )
2 ogrpinvlt.1 < = ( lt ‘ 𝐺 )
3 ogrpinvlt.2 𝐼 = ( invg𝐺 )
4 ogrpinv0lt.3 0 = ( 0g𝐺 )
5 simpll ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ oGrp )
6 ogrpgrp ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp )
7 5 6 syl ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ Grp )
8 1 4 grpidcl ( 𝐺 ∈ Grp → 0𝐵 )
9 7 8 syl ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → 0𝐵 )
10 simplr ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → 𝑋𝐵 )
11 1 3 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ 𝐵 )
12 7 10 11 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼𝑋 ) ∈ 𝐵 )
13 simpr ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → 0 < 𝑋 )
14 eqid ( +g𝐺 ) = ( +g𝐺 )
15 1 2 14 ogrpaddlt ( ( 𝐺 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ ( 𝐼𝑋 ) ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g𝐺 ) ( 𝐼𝑋 ) ) < ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) )
16 5 9 10 12 13 15 syl131anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g𝐺 ) ( 𝐼𝑋 ) ) < ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) )
17 1 14 4 grplid ( ( 𝐺 ∈ Grp ∧ ( 𝐼𝑋 ) ∈ 𝐵 ) → ( 0 ( +g𝐺 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )
18 7 12 17 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g𝐺 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )
19 1 14 4 3 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) = 0 )
20 7 10 19 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → ( 𝑋 ( +g𝐺 ) ( 𝐼𝑋 ) ) = 0 )
21 16 18 20 3brtr3d ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼𝑋 ) < 0 )
22 simpll ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → 𝐺 ∈ oGrp )
23 22 6 syl ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → 𝐺 ∈ Grp )
24 simplr ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → 𝑋𝐵 )
25 23 24 11 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( 𝐼𝑋 ) ∈ 𝐵 )
26 22 6 8 3syl ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → 0𝐵 )
27 simpr ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( 𝐼𝑋 ) < 0 )
28 1 2 14 ogrpaddlt ( ( 𝐺 ∈ oGrp ∧ ( ( 𝐼𝑋 ) ∈ 𝐵0𝐵𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( ( 𝐼𝑋 ) ( +g𝐺 ) 𝑋 ) < ( 0 ( +g𝐺 ) 𝑋 ) )
29 22 25 26 24 27 28 syl131anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( ( 𝐼𝑋 ) ( +g𝐺 ) 𝑋 ) < ( 0 ( +g𝐺 ) 𝑋 ) )
30 1 14 4 3 grplinv ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ( 𝐼𝑋 ) ( +g𝐺 ) 𝑋 ) = 0 )
31 23 24 30 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( ( 𝐼𝑋 ) ( +g𝐺 ) 𝑋 ) = 0 )
32 1 14 4 grplid ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 0 ( +g𝐺 ) 𝑋 ) = 𝑋 )
33 23 24 32 syl2anc ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → ( 0 ( +g𝐺 ) 𝑋 ) = 𝑋 )
34 29 31 33 3brtr3d ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) ∧ ( 𝐼𝑋 ) < 0 ) → 0 < 𝑋 )
35 21 34 impbida ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵 ) → ( 0 < 𝑋 ↔ ( 𝐼𝑋 ) < 0 ) )