Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpinvlt.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ogrpinvlt.1 |
⊢ < = ( lt ‘ 𝐺 ) |
3 |
|
ogrpinvlt.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
ogrpinv0lt.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ oGrp ) |
6 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝐺 ∈ Grp ) |
8 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 0 ∈ 𝐵 ) |
10 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 𝑋 ∈ 𝐵 ) |
11 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → 0 < 𝑋 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
15 |
1 2 14
|
ogrpaddlt |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
16 |
5 9 10 12 13 15
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) < ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
17 |
1 14 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
18 |
7 12 17
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
19 |
1 14 4 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
20 |
7 10 19
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
21 |
16 18 20
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 < 𝑋 ) → ( 𝐼 ‘ 𝑋 ) < 0 ) |
22 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝐺 ∈ oGrp ) |
23 |
22 6
|
syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝐺 ∈ Grp ) |
24 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 𝑋 ∈ 𝐵 ) |
25 |
23 24 11
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
26 |
22 6 8
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 0 ∈ 𝐵 ) |
27 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 𝐼 ‘ 𝑋 ) < 0 ) |
28 |
1 2 14
|
ogrpaddlt |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) < ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
29 |
22 25 26 24 27 28
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) < ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
30 |
1 14 4 3
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
31 |
23 24 30
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
32 |
1 14 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
33 |
23 24 32
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
34 |
29 31 33
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) < 0 ) → 0 < 𝑋 ) |
35 |
21 34
|
impbida |
⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) < 0 ) ) |