Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpinvlt.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ogrpinvlt.1 |
⊢ < = ( lt ‘ 𝐺 ) |
3 |
|
ogrpinvlt.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ oGrp ) |
5 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
7 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
8 |
4 7
|
syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
9 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) |
10 |
8 6 9
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
12 |
1 2 11
|
ogrpaddltbi |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
13 |
4 5 6 10 12
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
15 |
1 11 14 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
16 |
8 6 15
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
17 |
16
|
breq2d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 0g ‘ 𝐺 ) ) ) |
18 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
19 |
1 11
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ∈ 𝐵 ) |
20 |
8 5 10 19
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ∈ 𝐵 ) |
21 |
1 14
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
22 |
4 7 21
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
23 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
24 |
8 5 23
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
25 |
1 2 11 4 18 20 22 24
|
ogrpaddltrbid |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 0g ‘ 𝐺 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
26 |
13 17 25
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
27 |
1 11 14 3
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
28 |
8 5 27
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) |
30 |
1 11
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
31 |
8 24 5 10 30
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
32 |
1 11 14
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ 𝑌 ) ) |
33 |
8 10 32
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ 𝑌 ) ) |
34 |
29 31 33
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) = ( 𝐼 ‘ 𝑌 ) ) |
35 |
1 11 14
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
36 |
8 24 35
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
37 |
34 36
|
breq12d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ↔ ( 𝐼 ‘ 𝑌 ) < ( 𝐼 ‘ 𝑋 ) ) ) |
38 |
26 37
|
bitrd |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝐼 ‘ 𝑌 ) < ( 𝐼 ‘ 𝑋 ) ) ) |