| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ogrpinvlt.0 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ogrpinvlt.1 | ⊢  <   =  ( lt ‘ 𝐺 ) | 
						
							| 3 |  | ogrpinvlt.2 | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | simp1l | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  oGrp ) | 
						
							| 5 |  | simp2 | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | ogrpgrp | ⊢ ( 𝐺  ∈  oGrp  →  𝐺  ∈  Grp ) | 
						
							| 8 | 4 7 | syl | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 9 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 10 | 8 6 9 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 12 | 1 2 11 | ogrpaddltbi | ⊢ ( ( 𝐺  ∈  oGrp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 ) )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  <  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 13 | 4 5 6 10 12 | syl13anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  <  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 15 | 1 11 14 3 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 16 | 8 6 15 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  <  ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  ↔  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  <  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 18 |  | simp1r | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( oppg ‘ 𝐺 )  ∈  oGrp ) | 
						
							| 19 | 1 11 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 20 | 8 5 10 19 | syl3anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 21 | 1 14 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 22 | 4 7 21 | 3syl | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 0g ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 23 | 1 3 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 24 | 8 5 23 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 25 | 1 2 11 4 18 20 22 24 | ogrpaddltrbid | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  <  ( 0g ‘ 𝐺 )  ↔  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) )  <  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 26 | 13 17 25 | 3bitrd | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) )  <  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 27 | 1 11 14 3 | grplinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 28 | 8 5 27 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) | 
						
							| 30 | 1 11 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( 𝐼 ‘ 𝑋 )  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 ) )  →  ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 31 | 8 24 5 10 30 | syl13anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) | 
						
							| 32 | 1 11 14 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐼 ‘ 𝑌 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( 𝐼 ‘ 𝑌 ) ) | 
						
							| 33 | 8 10 32 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) )  =  ( 𝐼 ‘ 𝑌 ) ) | 
						
							| 34 | 29 31 33 | 3eqtr3d | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) )  =  ( 𝐼 ‘ 𝑌 ) ) | 
						
							| 35 | 1 11 14 | grprid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐼 ‘ 𝑋 )  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 𝐼 ‘ 𝑋 ) ) | 
						
							| 36 | 8 24 35 | syl2anc | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  =  ( 𝐼 ‘ 𝑋 ) ) | 
						
							| 37 | 34 36 | breq12d | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) )  <  ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) )  ↔  ( 𝐼 ‘ 𝑌 )  <  ( 𝐼 ‘ 𝑋 ) ) ) | 
						
							| 38 | 26 37 | bitrd | ⊢ ( ( ( 𝐺  ∈  oGrp  ∧  ( oppg ‘ 𝐺 )  ∈  oGrp )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝐼 ‘ 𝑌 )  <  ( 𝐼 ‘ 𝑋 ) ) ) |