Step |
Hyp |
Ref |
Expression |
1 |
|
gsumle.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
gsumle.l |
⊢ ≤ = ( le ‘ 𝑀 ) |
3 |
|
gsumle.m |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
4 |
|
gsumle.n |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
5 |
|
gsumle.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
6 |
|
gsumle.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
gsumle.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumle.c |
⊢ ( 𝜑 → 𝐹 ∘r ≤ 𝐺 ) |
9 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
10 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐴 ) ) ) |
12 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ∅ ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
14 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ∅ ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
16 |
13 15
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) |
17 |
11 16
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) ) |
18 |
|
sseq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) ) |
20 |
|
reseq2 |
⊢ ( 𝑎 = 𝑒 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝑒 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ) |
22 |
|
reseq2 |
⊢ ( 𝑎 = 𝑒 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝑒 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
24 |
21 23
|
breq12d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
25 |
19 24
|
imbi12d |
⊢ ( 𝑎 = 𝑒 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) ) |
26 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ) |
28 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
30 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
32 |
29 31
|
breq12d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) |
33 |
27 32
|
imbi12d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
34 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
36 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝐴 ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ) |
38 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝐴 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
40 |
37 39
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
41 |
35 40
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) ) |
42 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
43 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
44 |
3 42 43
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
45 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
46 |
45
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ ) |
47 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
48 |
47
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
49 |
46 48
|
eqtri |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 0g ‘ 𝑀 ) |
50 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
51 |
1 47
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
52 |
3 50 51
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
53 |
49 52
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) |
54 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
55 |
44 53 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
56 |
|
res0 |
⊢ ( 𝐺 ↾ ∅ ) = ∅ |
57 |
45 56
|
eqtr4i |
⊢ ( 𝐹 ↾ ∅ ) = ( 𝐺 ↾ ∅ ) |
58 |
57
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) |
59 |
55 58
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
61 |
|
ssun1 |
⊢ 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) |
62 |
|
sstr2 |
⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) ) |
63 |
61 62
|
ax-mp |
⊢ ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) |
64 |
63
|
anim2i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) |
65 |
64
|
imim1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
66 |
|
simplr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
67 |
|
simpllr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) |
68 |
|
simpr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
69 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
70 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ oMnd ) |
71 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
72 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
73 |
|
ssun2 |
⊢ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) |
74 |
|
vex |
⊢ 𝑦 ∈ V |
75 |
74
|
snss |
⊢ ( 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) ) |
76 |
73 75
|
mpbir |
⊢ 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) |
77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
78 |
72 77
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ 𝐴 ) |
79 |
71 78
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
80 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
81 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ CMnd ) |
82 |
|
vex |
⊢ 𝑒 ∈ V |
83 |
82
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ V ) |
84 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
85 |
61 72
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ⊆ 𝐴 ) |
86 |
84 85
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
87 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐴 ∈ Fin ) |
88 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 0g ‘ 𝑀 ) ∈ V ) |
89 |
84 87 88
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 finSupp ( 0g ‘ 𝑀 ) ) |
90 |
89 88
|
fsuppres |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
91 |
1 47 81 83 86 90
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
92 |
91
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
93 |
84 78
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
94 |
93
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
95 |
71 85
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
96 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑒 ⊆ 𝐴 ) → 𝑒 ∈ Fin ) |
97 |
87 85 96
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ Fin ) |
98 |
95 97 88
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
99 |
1 47 81 83 95 98
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
100 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
101 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
102 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝜑 ) |
103 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 ∘r ≤ 𝐺 ) |
104 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
105 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
106 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
107 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
108 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
109 |
104 105 5 5 106 107 108
|
ofrval |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
110 |
102 103 78 109
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
111 |
110
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
112 |
81
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ CMnd ) |
113 |
1 2 69 70 80 92 94 100 101 111 112
|
omndadd2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
114 |
97
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑒 ∈ Fin ) |
115 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
116 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
117 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝑒 → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
118 |
117
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
119 |
116 118
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
120 |
115 119
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
121 |
120
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
122 |
121
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
123 |
122
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
124 |
74
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑦 ∈ V ) |
125 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) |
126 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
127 |
1 69 112 114 123 124 125 94 126
|
gsumunsn |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
128 |
84 72
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
130 |
84 85
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
132 |
131
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
133 |
129 132
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
134 |
133
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
135 |
127 134
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
136 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
137 |
136
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
138 |
119
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
139 |
137 138
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐵 ) |
140 |
74
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ V ) |
141 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ¬ 𝑦 ∈ 𝑒 ) |
142 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
143 |
1 69 81 97 139 140 141 79 142
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
144 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
145 |
136 144
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
146 |
145
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
147 |
|
resabs1 |
⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) |
148 |
61 147
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) |
149 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑒 ⊆ 𝐴 ) |
150 |
136 149
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
151 |
148 150
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
152 |
151
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
153 |
|
resabs1 |
⊢ ( { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) |
154 |
73 153
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) |
155 |
73 144
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → { 𝑦 } ⊆ 𝐴 ) |
156 |
136 155
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
157 |
154 156
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
158 |
157
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
159 |
3 50
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑀 ∈ Mnd ) |
161 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ V ) |
162 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
163 |
144 162
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
164 |
136 163
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
165 |
142
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 = 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
166 |
1 160 161 164 165
|
gsumsnd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
167 |
158 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
168 |
152 167
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
169 |
146 168
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
171 |
143 170
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ) |
172 |
61 147
|
ax-mp |
⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) |
173 |
172
|
oveq2i |
⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) |
174 |
73 153
|
ax-mp |
⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) |
175 |
174
|
oveq2i |
⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) |
176 |
173 175
|
oveq12i |
⊢ ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) |
177 |
171 176
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) ) |
178 |
73 72
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → { 𝑦 } ⊆ 𝐴 ) |
179 |
71 178
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
180 |
179
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
181 |
|
cmnmnd |
⊢ ( 𝑀 ∈ CMnd → 𝑀 ∈ Mnd ) |
182 |
81 181
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ Mnd ) |
183 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
184 |
1 183
|
gsumsn |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
185 |
182 140 79 184
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
186 |
180 185
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
187 |
186
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
188 |
177 187
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
189 |
188
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
190 |
113 135 189
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
191 |
66 67 68 190
|
syl21anc |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
192 |
191
|
exp31 |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
193 |
192
|
a2d |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
194 |
65 193
|
syl5 |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
195 |
17 25 33 41 60 194
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
196 |
195
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
197 |
9 196
|
mpanr2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝜑 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
198 |
5 197
|
mpancom |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
199 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
200 |
104 199
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐹 ) ) |
202 |
|
fnresdm |
⊢ ( 𝐺 Fn 𝐴 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) |
203 |
105 202
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) |
204 |
203
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐺 ) ) |
205 |
198 201 204
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ≤ ( 𝑀 Σg 𝐺 ) ) |