| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumle.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
gsumle.l |
⊢ ≤ = ( le ‘ 𝑀 ) |
| 3 |
|
gsumle.m |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
| 4 |
|
gsumle.n |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 5 |
|
gsumle.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 6 |
|
gsumle.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
gsumle.g |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumle.c |
⊢ ( 𝜑 → 𝐹 ∘r ≤ 𝐺 ) |
| 9 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 10 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐴 ) ) ) |
| 12 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ∅ ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 14 |
|
reseq2 |
⊢ ( 𝑎 = ∅ → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ∅ ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑎 = ∅ → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 16 |
13 15
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) |
| 17 |
11 16
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) ) ) |
| 18 |
|
sseq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴 ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) ) |
| 20 |
|
reseq2 |
⊢ ( 𝑎 = 𝑒 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝑒 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ) |
| 22 |
|
reseq2 |
⊢ ( 𝑎 = 𝑒 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝑒 ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑎 = 𝑒 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
| 24 |
21 23
|
breq12d |
⊢ ( 𝑎 = 𝑒 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
| 25 |
19 24
|
imbi12d |
⊢ ( 𝑎 = 𝑒 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) ) |
| 26 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
| 27 |
26
|
anbi2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ) |
| 28 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 30 |
|
reseq2 |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 32 |
29 31
|
breq12d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) |
| 33 |
27 32
|
imbi12d |
⊢ ( 𝑎 = ( 𝑒 ∪ { 𝑦 } ) → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 34 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 35 |
34
|
anbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
| 36 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ↾ 𝑎 ) = ( 𝐹 ↾ 𝐴 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ) |
| 38 |
|
reseq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐺 ↾ 𝑎 ) = ( 𝐺 ↾ 𝐴 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 40 |
37 39
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ↔ ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
| 41 |
35 40
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑎 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) ) |
| 42 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
| 43 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
| 44 |
3 42 43
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
| 45 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 46 |
45
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ∅ ) |
| 47 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 48 |
47
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 49 |
46 48
|
eqtri |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 0g ‘ 𝑀 ) |
| 50 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
| 51 |
1 47
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 52 |
3 50 51
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 53 |
49 52
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) |
| 54 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 55 |
44 53 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ) |
| 56 |
|
res0 |
⊢ ( 𝐺 ↾ ∅ ) = ∅ |
| 57 |
45 56
|
eqtr4i |
⊢ ( 𝐹 ↾ ∅ ) = ( 𝐺 ↾ ∅ ) |
| 58 |
57
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) = ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) |
| 59 |
55 58
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ∅ ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ∅ ) ) ) |
| 61 |
|
ssun1 |
⊢ 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) |
| 62 |
|
sstr2 |
⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) ) |
| 63 |
61 62
|
ax-mp |
⊢ ( ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑒 ⊆ 𝐴 ) |
| 64 |
63
|
anim2i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) ) |
| 65 |
64
|
imim1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ) |
| 66 |
|
simplr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
| 67 |
|
simpllr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) |
| 68 |
|
simpr |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
| 69 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 70 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ oMnd ) |
| 71 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 72 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
| 73 |
|
ssun2 |
⊢ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) |
| 74 |
|
vex |
⊢ 𝑦 ∈ V |
| 75 |
74
|
snss |
⊢ ( 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) ) |
| 76 |
73 75
|
mpbir |
⊢ 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) |
| 77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 78 |
72 77
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ 𝐴 ) |
| 79 |
71 78
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 81 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ CMnd ) |
| 82 |
|
vex |
⊢ 𝑒 ∈ V |
| 83 |
82
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ V ) |
| 84 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 85 |
61 72
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ⊆ 𝐴 ) |
| 86 |
84 85
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
| 87 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐴 ∈ Fin ) |
| 88 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 0g ‘ 𝑀 ) ∈ V ) |
| 89 |
84 87 88
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 finSupp ( 0g ‘ 𝑀 ) ) |
| 90 |
89 88
|
fsuppres |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
| 91 |
1 47 81 83 86 90
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 92 |
91
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 93 |
84 78
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 94 |
93
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 95 |
71 85
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) : 𝑒 ⟶ 𝐵 ) |
| 96 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑒 ⊆ 𝐴 ) → 𝑒 ∈ Fin ) |
| 97 |
87 85 96
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑒 ∈ Fin ) |
| 98 |
95 97 88
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ 𝑒 ) finSupp ( 0g ‘ 𝑀 ) ) |
| 99 |
1 47 81 83 95 98
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 100 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ∈ 𝐵 ) |
| 101 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) |
| 102 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝜑 ) |
| 103 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝐹 ∘r ≤ 𝐺 ) |
| 104 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 105 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 106 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 107 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 108 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 109 |
104 105 5 5 106 107 108
|
ofrval |
⊢ ( ( 𝜑 ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 110 |
102 103 78 109
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑦 ) ) |
| 112 |
81
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑀 ∈ CMnd ) |
| 113 |
1 2 69 70 80 92 94 100 101 111 112
|
omndadd2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 114 |
97
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑒 ∈ Fin ) |
| 115 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 116 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
| 117 |
|
elun1 |
⊢ ( 𝑧 ∈ 𝑒 → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 118 |
117
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 119 |
116 118
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
| 120 |
115 119
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 121 |
120
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
| 122 |
121
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑧 ∈ 𝑒 → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) ) |
| 123 |
122
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 124 |
74
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → 𝑦 ∈ V ) |
| 125 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ¬ 𝑦 ∈ 𝑒 ) |
| 126 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 127 |
1 69 112 114 123 124 125 94 126
|
gsumunsn |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 128 |
84 72
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 130 |
84 85
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐹 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 132 |
131
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 133 |
129 132
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐹 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 135 |
127 134
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 136 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 137 |
136
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
| 138 |
119
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → 𝑧 ∈ 𝐴 ) |
| 139 |
137 138
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ 𝑧 ∈ 𝑒 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐵 ) |
| 140 |
74
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑦 ∈ V ) |
| 141 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ¬ 𝑦 ∈ 𝑒 ) |
| 142 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 143 |
1 69 81 97 139 140 141 79 142
|
gsumunsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 144 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
| 145 |
136 144
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) = ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 146 |
145
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 147 |
|
resabs1 |
⊢ ( 𝑒 ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) |
| 148 |
61 147
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) ) |
| 149 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑒 ⊆ 𝐴 ) |
| 150 |
136 149
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 151 |
148 150
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 152 |
151
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 153 |
|
resabs1 |
⊢ ( { 𝑦 } ⊆ ( 𝑒 ∪ { 𝑦 } ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) |
| 154 |
73 153
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) ) |
| 155 |
73 144
|
sstrid |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → { 𝑦 } ⊆ 𝐴 ) |
| 156 |
136 155
|
feqresmpt |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 157 |
154 156
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 158 |
157
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 159 |
3 50
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑀 ∈ Mnd ) |
| 161 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ V ) |
| 162 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ ( 𝑒 ∪ { 𝑦 } ) ) |
| 163 |
144 162
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
| 164 |
136 163
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) |
| 165 |
142
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑧 = 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 166 |
1 160 161 164 165
|
gsumsnd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝑧 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 167 |
158 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 168 |
152 167
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 169 |
146 168
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ↔ ( 𝑀 Σg ( 𝑧 ∈ ( 𝑒 ∪ { 𝑦 } ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ( 𝑀 Σg ( 𝑧 ∈ 𝑒 ↦ ( 𝐺 ‘ 𝑧 ) ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 171 |
143 170
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) ) |
| 172 |
61 147
|
ax-mp |
⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) = ( 𝐺 ↾ 𝑒 ) |
| 173 |
172
|
oveq2i |
⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) = ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) |
| 174 |
73 153
|
ax-mp |
⊢ ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) = ( 𝐺 ↾ { 𝑦 } ) |
| 175 |
174
|
oveq2i |
⊢ ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) |
| 176 |
173 175
|
oveq12i |
⊢ ( ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) |
| 177 |
171 176
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) ) |
| 178 |
73 72
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → { 𝑦 } ⊆ 𝐴 ) |
| 179 |
71 178
|
feqresmpt |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝐺 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 180 |
179
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 181 |
|
cmnmnd |
⊢ ( 𝑀 ∈ CMnd → 𝑀 ∈ Mnd ) |
| 182 |
81 181
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → 𝑀 ∈ Mnd ) |
| 183 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 184 |
1 183
|
gsumsn |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 185 |
182 140 79 184
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 186 |
180 185
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) = ( 𝐺 ‘ 𝑦 ) ) |
| 187 |
186
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( 𝐺 ↾ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 188 |
177 187
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 189 |
188
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) = ( ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ( +g ‘ 𝑀 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 190 |
113 135 189
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 191 |
66 67 68 190
|
syl21anc |
⊢ ( ( ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) ∧ ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) ∧ ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) |
| 192 |
191
|
exp31 |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 193 |
192
|
a2d |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 194 |
65 193
|
syl5 |
⊢ ( ( 𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒 ) → ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝑒 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝑒 ) ) ) → ( ( 𝜑 ∧ ( 𝑒 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ ( 𝑒 ∪ { 𝑦 } ) ) ) ) ) ) |
| 195 |
17 25 33 41 60 194
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) ) |
| 196 |
195
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 197 |
9 196
|
mpanr2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝜑 ) → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 198 |
5 197
|
mpancom |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) ≤ ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) ) |
| 199 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 200 |
104 199
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 201 |
200
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐹 ) ) |
| 202 |
|
fnresdm |
⊢ ( 𝐺 Fn 𝐴 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) |
| 203 |
105 202
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐴 ) = 𝐺 ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝐺 ↾ 𝐴 ) ) = ( 𝑀 Σg 𝐺 ) ) |
| 205 |
198 201 204
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑀 Σg 𝐹 ) ≤ ( 𝑀 Σg 𝐺 ) ) |