| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppres.s |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| 2 |
|
fsuppres.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 3 |
|
fsuppimp |
⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 4 |
|
relprcnfsupp |
⊢ ( ¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍 ) |
| 5 |
4
|
con4i |
⊢ ( 𝐹 finSupp 𝑍 → 𝐹 ∈ V ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 7 |
6 2
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 9 |
|
ressuppss |
⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| 10 |
|
ssfi |
⊢ ( ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) |
| 11 |
10
|
expcom |
⊢ ( ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 12 |
8 9 11
|
3syl |
⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 13 |
12
|
expcom |
⊢ ( Fun 𝐹 → ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) ) |
| 14 |
13
|
com23 |
⊢ ( Fun 𝐹 → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 16 |
3 15
|
syl |
⊢ ( 𝐹 finSupp 𝑍 → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 17 |
1 16
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) |
| 18 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝑋 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) → Fun ( 𝐹 ↾ 𝑋 ) ) |
| 20 |
1 3 19
|
3syl |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑋 ) ) |
| 21 |
|
resexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 ↾ 𝑋 ) ∈ V ) |
| 22 |
1 5 21
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) ∈ V ) |
| 23 |
|
funisfsupp |
⊢ ( ( Fun ( 𝐹 ↾ 𝑋 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ↔ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 24 |
20 22 2 23
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ↔ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 25 |
17 24
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |