Metamath Proof Explorer


Theorem ogrpinv0lt

Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpinvlt.0 B = Base G
ogrpinvlt.1 < ˙ = < G
ogrpinvlt.2 I = inv g G
ogrpinv0lt.3 0 ˙ = 0 G
Assertion ogrpinv0lt G oGrp X B 0 ˙ < ˙ X I X < ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 ogrpinvlt.0 B = Base G
2 ogrpinvlt.1 < ˙ = < G
3 ogrpinvlt.2 I = inv g G
4 ogrpinv0lt.3 0 ˙ = 0 G
5 simpll G oGrp X B 0 ˙ < ˙ X G oGrp
6 ogrpgrp G oGrp G Grp
7 5 6 syl G oGrp X B 0 ˙ < ˙ X G Grp
8 1 4 grpidcl G Grp 0 ˙ B
9 7 8 syl G oGrp X B 0 ˙ < ˙ X 0 ˙ B
10 simplr G oGrp X B 0 ˙ < ˙ X X B
11 1 3 grpinvcl G Grp X B I X B
12 7 10 11 syl2anc G oGrp X B 0 ˙ < ˙ X I X B
13 simpr G oGrp X B 0 ˙ < ˙ X 0 ˙ < ˙ X
14 eqid + G = + G
15 1 2 14 ogrpaddlt G oGrp 0 ˙ B X B I X B 0 ˙ < ˙ X 0 ˙ + G I X < ˙ X + G I X
16 5 9 10 12 13 15 syl131anc G oGrp X B 0 ˙ < ˙ X 0 ˙ + G I X < ˙ X + G I X
17 1 14 4 grplid G Grp I X B 0 ˙ + G I X = I X
18 7 12 17 syl2anc G oGrp X B 0 ˙ < ˙ X 0 ˙ + G I X = I X
19 1 14 4 3 grprinv G Grp X B X + G I X = 0 ˙
20 7 10 19 syl2anc G oGrp X B 0 ˙ < ˙ X X + G I X = 0 ˙
21 16 18 20 3brtr3d G oGrp X B 0 ˙ < ˙ X I X < ˙ 0 ˙
22 simpll G oGrp X B I X < ˙ 0 ˙ G oGrp
23 22 6 syl G oGrp X B I X < ˙ 0 ˙ G Grp
24 simplr G oGrp X B I X < ˙ 0 ˙ X B
25 23 24 11 syl2anc G oGrp X B I X < ˙ 0 ˙ I X B
26 22 6 8 3syl G oGrp X B I X < ˙ 0 ˙ 0 ˙ B
27 simpr G oGrp X B I X < ˙ 0 ˙ I X < ˙ 0 ˙
28 1 2 14 ogrpaddlt G oGrp I X B 0 ˙ B X B I X < ˙ 0 ˙ I X + G X < ˙ 0 ˙ + G X
29 22 25 26 24 27 28 syl131anc G oGrp X B I X < ˙ 0 ˙ I X + G X < ˙ 0 ˙ + G X
30 1 14 4 3 grplinv G Grp X B I X + G X = 0 ˙
31 23 24 30 syl2anc G oGrp X B I X < ˙ 0 ˙ I X + G X = 0 ˙
32 1 14 4 grplid G Grp X B 0 ˙ + G X = X
33 23 24 32 syl2anc G oGrp X B I X < ˙ 0 ˙ 0 ˙ + G X = X
34 29 31 33 3brtr3d G oGrp X B I X < ˙ 0 ˙ 0 ˙ < ˙ X
35 21 34 impbida G oGrp X B 0 ˙ < ˙ X I X < ˙ 0 ˙