Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpinvlt.0 |
|- B = ( Base ` G ) |
2 |
|
ogrpinvlt.1 |
|- .< = ( lt ` G ) |
3 |
|
ogrpinvlt.2 |
|- I = ( invg ` G ) |
4 |
|
ogrpinv0lt.3 |
|- .0. = ( 0g ` G ) |
5 |
|
simpll |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> G e. oGrp ) |
6 |
|
ogrpgrp |
|- ( G e. oGrp -> G e. Grp ) |
7 |
5 6
|
syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> G e. Grp ) |
8 |
1 4
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
9 |
7 8
|
syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> .0. e. B ) |
10 |
|
simplr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> X e. B ) |
11 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
12 |
7 10 11
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( I ` X ) e. B ) |
13 |
|
simpr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> .0. .< X ) |
14 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
15 |
1 2 14
|
ogrpaddlt |
|- ( ( G e. oGrp /\ ( .0. e. B /\ X e. B /\ ( I ` X ) e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .< ( X ( +g ` G ) ( I ` X ) ) ) |
16 |
5 9 10 12 13 15
|
syl131anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .< ( X ( +g ` G ) ( I ` X ) ) ) |
17 |
1 14 4
|
grplid |
|- ( ( G e. Grp /\ ( I ` X ) e. B ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
18 |
7 12 17
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
19 |
1 14 4 3
|
grprinv |
|- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
20 |
7 10 19
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
21 |
16 18 20
|
3brtr3d |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( I ` X ) .< .0. ) |
22 |
|
simpll |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> G e. oGrp ) |
23 |
22 6
|
syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> G e. Grp ) |
24 |
|
simplr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> X e. B ) |
25 |
23 24 11
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( I ` X ) e. B ) |
26 |
22 6 8
|
3syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> .0. e. B ) |
27 |
|
simpr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( I ` X ) .< .0. ) |
28 |
1 2 14
|
ogrpaddlt |
|- ( ( G e. oGrp /\ ( ( I ` X ) e. B /\ .0. e. B /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .< ( .0. ( +g ` G ) X ) ) |
29 |
22 25 26 24 27 28
|
syl131anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .< ( .0. ( +g ` G ) X ) ) |
30 |
1 14 4 3
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
31 |
23 24 30
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
32 |
1 14 4
|
grplid |
|- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) X ) = X ) |
33 |
23 24 32
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> ( .0. ( +g ` G ) X ) = X ) |
34 |
29 31 33
|
3brtr3d |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .< .0. ) -> .0. .< X ) |
35 |
21 34
|
impbida |
|- ( ( G e. oGrp /\ X e. B ) -> ( .0. .< X <-> ( I ` X ) .< .0. ) ) |