| Step |
Hyp |
Ref |
Expression |
| 1 |
|
archirng.b |
|- B = ( Base ` W ) |
| 2 |
|
archirng.0 |
|- .0. = ( 0g ` W ) |
| 3 |
|
archirng.i |
|- .< = ( lt ` W ) |
| 4 |
|
archirng.l |
|- .<_ = ( le ` W ) |
| 5 |
|
archirng.x |
|- .x. = ( .g ` W ) |
| 6 |
|
archirng.1 |
|- ( ph -> W e. oGrp ) |
| 7 |
|
archirng.2 |
|- ( ph -> W e. Archi ) |
| 8 |
|
archirng.3 |
|- ( ph -> X e. B ) |
| 9 |
|
archirng.4 |
|- ( ph -> Y e. B ) |
| 10 |
|
archirng.5 |
|- ( ph -> .0. .< X ) |
| 11 |
|
archirngz.1 |
|- ( ph -> ( oppG ` W ) e. oGrp ) |
| 12 |
|
neg1z |
|- -u 1 e. ZZ |
| 13 |
|
ogrpgrp |
|- ( W e. oGrp -> W e. Grp ) |
| 14 |
6 13
|
syl |
|- ( ph -> W e. Grp ) |
| 15 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 16 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 17 |
1 5 16
|
mulgneg |
|- ( ( W e. Grp /\ 1 e. ZZ /\ X e. B ) -> ( -u 1 .x. X ) = ( ( invg ` W ) ` ( 1 .x. X ) ) ) |
| 18 |
14 15 8 17
|
syl3anc |
|- ( ph -> ( -u 1 .x. X ) = ( ( invg ` W ) ` ( 1 .x. X ) ) ) |
| 19 |
1 5
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
| 20 |
8 19
|
syl |
|- ( ph -> ( 1 .x. X ) = X ) |
| 21 |
20
|
fveq2d |
|- ( ph -> ( ( invg ` W ) ` ( 1 .x. X ) ) = ( ( invg ` W ) ` X ) ) |
| 22 |
18 21
|
eqtrd |
|- ( ph -> ( -u 1 .x. X ) = ( ( invg ` W ) ` X ) ) |
| 23 |
1 3 16 2
|
ogrpinv0lt |
|- ( ( W e. oGrp /\ X e. B ) -> ( .0. .< X <-> ( ( invg ` W ) ` X ) .< .0. ) ) |
| 24 |
23
|
biimpa |
|- ( ( ( W e. oGrp /\ X e. B ) /\ .0. .< X ) -> ( ( invg ` W ) ` X ) .< .0. ) |
| 25 |
6 8 10 24
|
syl21anc |
|- ( ph -> ( ( invg ` W ) ` X ) .< .0. ) |
| 26 |
22 25
|
eqbrtrd |
|- ( ph -> ( -u 1 .x. X ) .< .0. ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( -u 1 .x. X ) .< .0. ) |
| 28 |
|
simpr |
|- ( ( ph /\ Y = .0. ) -> Y = .0. ) |
| 29 |
27 28
|
breqtrrd |
|- ( ( ph /\ Y = .0. ) -> ( -u 1 .x. X ) .< Y ) |
| 30 |
|
isogrp |
|- ( W e. oGrp <-> ( W e. Grp /\ W e. oMnd ) ) |
| 31 |
30
|
simprbi |
|- ( W e. oGrp -> W e. oMnd ) |
| 32 |
|
omndtos |
|- ( W e. oMnd -> W e. Toset ) |
| 33 |
6 31 32
|
3syl |
|- ( ph -> W e. Toset ) |
| 34 |
|
tospos |
|- ( W e. Toset -> W e. Poset ) |
| 35 |
33 34
|
syl |
|- ( ph -> W e. Poset ) |
| 36 |
1 2
|
grpidcl |
|- ( W e. Grp -> .0. e. B ) |
| 37 |
6 13 36
|
3syl |
|- ( ph -> .0. e. B ) |
| 38 |
1 4
|
posref |
|- ( ( W e. Poset /\ .0. e. B ) -> .0. .<_ .0. ) |
| 39 |
35 37 38
|
syl2anc |
|- ( ph -> .0. .<_ .0. ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ Y = .0. ) -> .0. .<_ .0. ) |
| 41 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 42 |
41
|
negeqi |
|- -u ( 1 - 1 ) = -u 0 |
| 43 |
|
ax-1cn |
|- 1 e. CC |
| 44 |
43 43
|
negsubdii |
|- -u ( 1 - 1 ) = ( -u 1 + 1 ) |
| 45 |
|
neg0 |
|- -u 0 = 0 |
| 46 |
42 44 45
|
3eqtr3i |
|- ( -u 1 + 1 ) = 0 |
| 47 |
46
|
oveq1i |
|- ( ( -u 1 + 1 ) .x. X ) = ( 0 .x. X ) |
| 48 |
1 2 5
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = .0. ) |
| 49 |
8 48
|
syl |
|- ( ph -> ( 0 .x. X ) = .0. ) |
| 50 |
47 49
|
eqtrid |
|- ( ph -> ( ( -u 1 + 1 ) .x. X ) = .0. ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ Y = .0. ) -> ( ( -u 1 + 1 ) .x. X ) = .0. ) |
| 52 |
40 28 51
|
3brtr4d |
|- ( ( ph /\ Y = .0. ) -> Y .<_ ( ( -u 1 + 1 ) .x. X ) ) |
| 53 |
29 52
|
jca |
|- ( ( ph /\ Y = .0. ) -> ( ( -u 1 .x. X ) .< Y /\ Y .<_ ( ( -u 1 + 1 ) .x. X ) ) ) |
| 54 |
|
oveq1 |
|- ( n = -u 1 -> ( n .x. X ) = ( -u 1 .x. X ) ) |
| 55 |
54
|
breq1d |
|- ( n = -u 1 -> ( ( n .x. X ) .< Y <-> ( -u 1 .x. X ) .< Y ) ) |
| 56 |
|
oveq1 |
|- ( n = -u 1 -> ( n + 1 ) = ( -u 1 + 1 ) ) |
| 57 |
56
|
oveq1d |
|- ( n = -u 1 -> ( ( n + 1 ) .x. X ) = ( ( -u 1 + 1 ) .x. X ) ) |
| 58 |
57
|
breq2d |
|- ( n = -u 1 -> ( Y .<_ ( ( n + 1 ) .x. X ) <-> Y .<_ ( ( -u 1 + 1 ) .x. X ) ) ) |
| 59 |
55 58
|
anbi12d |
|- ( n = -u 1 -> ( ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) <-> ( ( -u 1 .x. X ) .< Y /\ Y .<_ ( ( -u 1 + 1 ) .x. X ) ) ) ) |
| 60 |
59
|
rspcev |
|- ( ( -u 1 e. ZZ /\ ( ( -u 1 .x. X ) .< Y /\ Y .<_ ( ( -u 1 + 1 ) .x. X ) ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 61 |
12 53 60
|
sylancr |
|- ( ( ph /\ Y = .0. ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 62 |
|
simpr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> m e. NN0 ) |
| 63 |
62
|
nn0zd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> m e. ZZ ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> m e. ZZ ) |
| 65 |
64
|
znegcld |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> -u m e. ZZ ) |
| 66 |
|
2z |
|- 2 e. ZZ |
| 67 |
66
|
a1i |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> 2 e. ZZ ) |
| 68 |
65 67
|
zsubcld |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( -u m - 2 ) e. ZZ ) |
| 69 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 70 |
69
|
adantl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> m e. CC ) |
| 71 |
|
2cnd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> 2 e. CC ) |
| 72 |
70 71
|
negdi2d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> -u ( m + 2 ) = ( -u m - 2 ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 2 ) .x. X ) = ( ( -u m - 2 ) .x. X ) ) |
| 74 |
6
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> W e. oGrp ) |
| 75 |
11
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( oppG ` W ) e. oGrp ) |
| 76 |
74 75
|
jca |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) ) |
| 77 |
14
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> W e. Grp ) |
| 78 |
63
|
peano2zd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( m + 1 ) e. ZZ ) |
| 79 |
8
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> X e. B ) |
| 80 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ ( m + 1 ) e. ZZ /\ X e. B ) -> ( ( m + 1 ) .x. X ) e. B ) |
| 81 |
77 78 79 80
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m + 1 ) .x. X ) e. B ) |
| 82 |
66
|
a1i |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> 2 e. ZZ ) |
| 83 |
63 82
|
zaddcld |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( m + 2 ) e. ZZ ) |
| 84 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ ( m + 2 ) e. ZZ /\ X e. B ) -> ( ( m + 2 ) .x. X ) e. B ) |
| 85 |
77 83 79 84
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m + 2 ) .x. X ) e. B ) |
| 86 |
77 36
|
syl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> .0. e. B ) |
| 87 |
10
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> .0. .< X ) |
| 88 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 89 |
1 3 88
|
ogrpaddlt |
|- ( ( W e. oGrp /\ ( .0. e. B /\ X e. B /\ ( ( m + 1 ) .x. X ) e. B ) /\ .0. .< X ) -> ( .0. ( +g ` W ) ( ( m + 1 ) .x. X ) ) .< ( X ( +g ` W ) ( ( m + 1 ) .x. X ) ) ) |
| 90 |
74 86 79 81 87 89
|
syl131anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( .0. ( +g ` W ) ( ( m + 1 ) .x. X ) ) .< ( X ( +g ` W ) ( ( m + 1 ) .x. X ) ) ) |
| 91 |
1 88 2
|
grplid |
|- ( ( W e. Grp /\ ( ( m + 1 ) .x. X ) e. B ) -> ( .0. ( +g ` W ) ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .x. X ) ) |
| 92 |
77 81 91
|
syl2anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( .0. ( +g ` W ) ( ( m + 1 ) .x. X ) ) = ( ( m + 1 ) .x. X ) ) |
| 93 |
|
1cnd |
|- ( m e. NN0 -> 1 e. CC ) |
| 94 |
69 93 93
|
addassd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) = ( m + ( 1 + 1 ) ) ) |
| 95 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 96 |
95
|
oveq2i |
|- ( m + ( 1 + 1 ) ) = ( m + 2 ) |
| 97 |
94 96
|
eqtrdi |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) = ( m + 2 ) ) |
| 98 |
69 93
|
addcld |
|- ( m e. NN0 -> ( m + 1 ) e. CC ) |
| 99 |
98 93
|
addcomd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) = ( 1 + ( m + 1 ) ) ) |
| 100 |
97 99
|
eqtr3d |
|- ( m e. NN0 -> ( m + 2 ) = ( 1 + ( m + 1 ) ) ) |
| 101 |
100
|
oveq1d |
|- ( m e. NN0 -> ( ( m + 2 ) .x. X ) = ( ( 1 + ( m + 1 ) ) .x. X ) ) |
| 102 |
101
|
adantl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m + 2 ) .x. X ) = ( ( 1 + ( m + 1 ) ) .x. X ) ) |
| 103 |
|
1zzd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> 1 e. ZZ ) |
| 104 |
1 5 88
|
mulgdir |
|- ( ( W e. Grp /\ ( 1 e. ZZ /\ ( m + 1 ) e. ZZ /\ X e. B ) ) -> ( ( 1 + ( m + 1 ) ) .x. X ) = ( ( 1 .x. X ) ( +g ` W ) ( ( m + 1 ) .x. X ) ) ) |
| 105 |
77 103 78 79 104
|
syl13anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( 1 + ( m + 1 ) ) .x. X ) = ( ( 1 .x. X ) ( +g ` W ) ( ( m + 1 ) .x. X ) ) ) |
| 106 |
79 19
|
syl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( 1 .x. X ) = X ) |
| 107 |
106
|
oveq1d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( 1 .x. X ) ( +g ` W ) ( ( m + 1 ) .x. X ) ) = ( X ( +g ` W ) ( ( m + 1 ) .x. X ) ) ) |
| 108 |
102 105 107
|
3eqtrrd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( X ( +g ` W ) ( ( m + 1 ) .x. X ) ) = ( ( m + 2 ) .x. X ) ) |
| 109 |
90 92 108
|
3brtr3d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m + 1 ) .x. X ) .< ( ( m + 2 ) .x. X ) ) |
| 110 |
1 3 16
|
ogrpinvlt |
|- ( ( ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) /\ ( ( m + 1 ) .x. X ) e. B /\ ( ( m + 2 ) .x. X ) e. B ) -> ( ( ( m + 1 ) .x. X ) .< ( ( m + 2 ) .x. X ) <-> ( ( invg ` W ) ` ( ( m + 2 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) ) |
| 111 |
110
|
biimpa |
|- ( ( ( ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) /\ ( ( m + 1 ) .x. X ) e. B /\ ( ( m + 2 ) .x. X ) e. B ) /\ ( ( m + 1 ) .x. X ) .< ( ( m + 2 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( m + 2 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 112 |
76 81 85 109 111
|
syl31anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( invg ` W ) ` ( ( m + 2 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 113 |
1 5 16
|
mulgneg |
|- ( ( W e. Grp /\ ( m + 2 ) e. ZZ /\ X e. B ) -> ( -u ( m + 2 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 2 ) .x. X ) ) ) |
| 114 |
77 83 79 113
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 2 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 2 ) .x. X ) ) ) |
| 115 |
1 5 16
|
mulgneg |
|- ( ( W e. Grp /\ ( m + 1 ) e. ZZ /\ X e. B ) -> ( -u ( m + 1 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 116 |
77 78 79 115
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 1 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 117 |
112 114 116
|
3brtr4d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 2 ) .x. X ) .< ( -u ( m + 1 ) .x. X ) ) |
| 118 |
73 117
|
eqbrtrrd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( -u m - 2 ) .x. X ) .< ( -u ( m + 1 ) .x. X ) ) |
| 119 |
118
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( -u m - 2 ) .x. X ) .< ( -u ( m + 1 ) .x. X ) ) |
| 120 |
116
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( -u ( m + 1 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 121 |
35
|
ad4antr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> W e. Poset ) |
| 122 |
1 16
|
grpinvcl |
|- ( ( W e. Grp /\ Y e. B ) -> ( ( invg ` W ) ` Y ) e. B ) |
| 123 |
14 9 122
|
syl2anc |
|- ( ph -> ( ( invg ` W ) ` Y ) e. B ) |
| 124 |
123
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( invg ` W ) ` Y ) e. B ) |
| 125 |
124
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` Y ) e. B ) |
| 126 |
81
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( m + 1 ) .x. X ) e. B ) |
| 127 |
|
simplrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) |
| 128 |
|
simpr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) |
| 129 |
1 4
|
posasymb |
|- ( ( W e. Poset /\ ( ( invg ` W ) ` Y ) e. B /\ ( ( m + 1 ) .x. X ) e. B ) -> ( ( ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) <-> ( ( invg ` W ) ` Y ) = ( ( m + 1 ) .x. X ) ) ) |
| 130 |
129
|
biimpa |
|- ( ( ( W e. Poset /\ ( ( invg ` W ) ` Y ) e. B /\ ( ( m + 1 ) .x. X ) e. B ) /\ ( ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) ) -> ( ( invg ` W ) ` Y ) = ( ( m + 1 ) .x. X ) ) |
| 131 |
121 125 126 127 128 130
|
syl32anc |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` Y ) = ( ( m + 1 ) .x. X ) ) |
| 132 |
131
|
fveq2d |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) = ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 133 |
1 16
|
grpinvinv |
|- ( ( W e. Grp /\ Y e. B ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) = Y ) |
| 134 |
14 9 133
|
syl2anc |
|- ( ph -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) = Y ) |
| 135 |
134
|
ad4antr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) = Y ) |
| 136 |
120 132 135
|
3eqtr2rd |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> Y = ( -u ( m + 1 ) .x. X ) ) |
| 137 |
119 136
|
breqtrrd |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( ( -u m - 2 ) .x. X ) .< Y ) |
| 138 |
|
1cnd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> 1 e. CC ) |
| 139 |
70 71 138
|
addsubassd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m + 2 ) - 1 ) = ( m + ( 2 - 1 ) ) ) |
| 140 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 141 |
140
|
oveq2i |
|- ( m + ( 2 - 1 ) ) = ( m + 1 ) |
| 142 |
139 141
|
eqtr2di |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( m + 1 ) = ( ( m + 2 ) - 1 ) ) |
| 143 |
142
|
negeqd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> -u ( m + 1 ) = -u ( ( m + 2 ) - 1 ) ) |
| 144 |
70 71
|
addcld |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( m + 2 ) e. CC ) |
| 145 |
144 138
|
negsubdid |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> -u ( ( m + 2 ) - 1 ) = ( -u ( m + 2 ) + 1 ) ) |
| 146 |
72
|
oveq1d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 2 ) + 1 ) = ( ( -u m - 2 ) + 1 ) ) |
| 147 |
143 145 146
|
3eqtrrd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( -u m - 2 ) + 1 ) = -u ( m + 1 ) ) |
| 148 |
147
|
oveq1d |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( ( -u m - 2 ) + 1 ) .x. X ) = ( -u ( m + 1 ) .x. X ) ) |
| 149 |
33
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> W e. Toset ) |
| 150 |
149 34
|
syl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> W e. Poset ) |
| 151 |
63
|
znegcld |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> -u m e. ZZ ) |
| 152 |
151 82
|
zsubcld |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u m - 2 ) e. ZZ ) |
| 153 |
152
|
peano2zd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( -u m - 2 ) + 1 ) e. ZZ ) |
| 154 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ ( ( -u m - 2 ) + 1 ) e. ZZ /\ X e. B ) -> ( ( ( -u m - 2 ) + 1 ) .x. X ) e. B ) |
| 155 |
77 153 79 154
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( ( -u m - 2 ) + 1 ) .x. X ) e. B ) |
| 156 |
1 4
|
posref |
|- ( ( W e. Poset /\ ( ( ( -u m - 2 ) + 1 ) .x. X ) e. B ) -> ( ( ( -u m - 2 ) + 1 ) .x. X ) .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 157 |
150 155 156
|
syl2anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( ( -u m - 2 ) + 1 ) .x. X ) .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 158 |
148 157
|
eqbrtrrd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u ( m + 1 ) .x. X ) .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 159 |
158
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> ( -u ( m + 1 ) .x. X ) .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 160 |
136 159
|
eqbrtrd |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> Y .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 161 |
|
oveq1 |
|- ( n = ( -u m - 2 ) -> ( n .x. X ) = ( ( -u m - 2 ) .x. X ) ) |
| 162 |
161
|
breq1d |
|- ( n = ( -u m - 2 ) -> ( ( n .x. X ) .< Y <-> ( ( -u m - 2 ) .x. X ) .< Y ) ) |
| 163 |
|
oveq1 |
|- ( n = ( -u m - 2 ) -> ( n + 1 ) = ( ( -u m - 2 ) + 1 ) ) |
| 164 |
163
|
oveq1d |
|- ( n = ( -u m - 2 ) -> ( ( n + 1 ) .x. X ) = ( ( ( -u m - 2 ) + 1 ) .x. X ) ) |
| 165 |
164
|
breq2d |
|- ( n = ( -u m - 2 ) -> ( Y .<_ ( ( n + 1 ) .x. X ) <-> Y .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) ) |
| 166 |
162 165
|
anbi12d |
|- ( n = ( -u m - 2 ) -> ( ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) <-> ( ( ( -u m - 2 ) .x. X ) .< Y /\ Y .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) ) ) |
| 167 |
166
|
rspcev |
|- ( ( ( -u m - 2 ) e. ZZ /\ ( ( ( -u m - 2 ) .x. X ) .< Y /\ Y .<_ ( ( ( -u m - 2 ) + 1 ) .x. X ) ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 168 |
68 137 160 167
|
syl12anc |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 169 |
78
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( m + 1 ) e. ZZ ) |
| 170 |
169
|
znegcld |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> -u ( m + 1 ) e. ZZ ) |
| 171 |
6
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ ( m e. NN0 /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) -> W e. oGrp ) |
| 172 |
11
|
ad2antrr |
|- ( ( ( ph /\ Y .< .0. ) /\ ( m e. NN0 /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) -> ( oppG ` W ) e. oGrp ) |
| 173 |
171 172
|
jca |
|- ( ( ( ph /\ Y .< .0. ) /\ ( m e. NN0 /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) -> ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) ) |
| 174 |
173
|
3anassrs |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) ) |
| 175 |
124
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` Y ) e. B ) |
| 176 |
81
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( m + 1 ) .x. X ) e. B ) |
| 177 |
|
simpr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) |
| 178 |
1 3 16
|
ogrpinvlt |
|- ( ( ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) /\ ( ( invg ` W ) ` Y ) e. B /\ ( ( m + 1 ) .x. X ) e. B ) -> ( ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) <-> ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) ) ) |
| 179 |
178
|
biimpa |
|- ( ( ( ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) /\ ( ( invg ` W ) ` Y ) e. B /\ ( ( m + 1 ) .x. X ) e. B ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) ) |
| 180 |
174 175 176 177 179
|
syl31anc |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) .< ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) ) |
| 181 |
116
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( -u ( m + 1 ) .x. X ) = ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) ) |
| 182 |
181
|
eqcomd |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( m + 1 ) .x. X ) ) = ( -u ( m + 1 ) .x. X ) ) |
| 183 |
134
|
ad4antr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) = Y ) |
| 184 |
180 182 183
|
3brtr3d |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( -u ( m + 1 ) .x. X ) .< Y ) |
| 185 |
|
simp-4l |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ph ) |
| 186 |
1 5
|
mulgcl |
|- ( ( W e. Grp /\ m e. ZZ /\ X e. B ) -> ( m .x. X ) e. B ) |
| 187 |
77 63 79 186
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( m .x. X ) e. B ) |
| 188 |
1 3 16
|
ogrpinvlt |
|- ( ( ( W e. oGrp /\ ( oppG ` W ) e. oGrp ) /\ ( m .x. X ) e. B /\ ( ( invg ` W ) ` Y ) e. B ) -> ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) <-> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< ( ( invg ` W ) ` ( m .x. X ) ) ) ) |
| 189 |
76 187 124 188
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) <-> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< ( ( invg ` W ) ` ( m .x. X ) ) ) ) |
| 190 |
189
|
biimpa |
|- ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( m .x. X ) .< ( ( invg ` W ) ` Y ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 191 |
190
|
adantrr |
|- ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 192 |
191
|
adantr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 193 |
|
negdi |
|- ( ( m e. CC /\ 1 e. CC ) -> -u ( m + 1 ) = ( -u m + -u 1 ) ) |
| 194 |
69 43 193
|
sylancl |
|- ( m e. NN0 -> -u ( m + 1 ) = ( -u m + -u 1 ) ) |
| 195 |
194
|
oveq1d |
|- ( m e. NN0 -> ( -u ( m + 1 ) + 1 ) = ( ( -u m + -u 1 ) + 1 ) ) |
| 196 |
69
|
negcld |
|- ( m e. NN0 -> -u m e. CC ) |
| 197 |
93
|
negcld |
|- ( m e. NN0 -> -u 1 e. CC ) |
| 198 |
196 197 93
|
addassd |
|- ( m e. NN0 -> ( ( -u m + -u 1 ) + 1 ) = ( -u m + ( -u 1 + 1 ) ) ) |
| 199 |
46
|
oveq2i |
|- ( -u m + ( -u 1 + 1 ) ) = ( -u m + 0 ) |
| 200 |
199
|
a1i |
|- ( m e. NN0 -> ( -u m + ( -u 1 + 1 ) ) = ( -u m + 0 ) ) |
| 201 |
196
|
addridd |
|- ( m e. NN0 -> ( -u m + 0 ) = -u m ) |
| 202 |
198 200 201
|
3eqtrd |
|- ( m e. NN0 -> ( ( -u m + -u 1 ) + 1 ) = -u m ) |
| 203 |
195 202
|
eqtrd |
|- ( m e. NN0 -> ( -u ( m + 1 ) + 1 ) = -u m ) |
| 204 |
203
|
oveq1d |
|- ( m e. NN0 -> ( ( -u ( m + 1 ) + 1 ) .x. X ) = ( -u m .x. X ) ) |
| 205 |
204
|
adantl |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( -u ( m + 1 ) + 1 ) .x. X ) = ( -u m .x. X ) ) |
| 206 |
1 5 16
|
mulgneg |
|- ( ( W e. Grp /\ m e. ZZ /\ X e. B ) -> ( -u m .x. X ) = ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 207 |
77 63 79 206
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( -u m .x. X ) = ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 208 |
205 207
|
eqtrd |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( -u ( m + 1 ) + 1 ) .x. X ) = ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 209 |
208
|
ad2antrr |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( -u ( m + 1 ) + 1 ) .x. X ) = ( ( invg ` W ) ` ( m .x. X ) ) ) |
| 210 |
209
|
eqcomd |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> ( ( invg ` W ) ` ( m .x. X ) ) = ( ( -u ( m + 1 ) + 1 ) .x. X ) ) |
| 211 |
192 183 210
|
3brtr3d |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> Y .< ( ( -u ( m + 1 ) + 1 ) .x. X ) ) |
| 212 |
|
ovexd |
|- ( ph -> ( ( -u ( m + 1 ) + 1 ) .x. X ) e. _V ) |
| 213 |
4 3
|
pltle |
|- ( ( W e. oGrp /\ Y e. B /\ ( ( -u ( m + 1 ) + 1 ) .x. X ) e. _V ) -> ( Y .< ( ( -u ( m + 1 ) + 1 ) .x. X ) -> Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) ) |
| 214 |
6 9 212 213
|
syl3anc |
|- ( ph -> ( Y .< ( ( -u ( m + 1 ) + 1 ) .x. X ) -> Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) ) |
| 215 |
185 211 214
|
sylc |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) |
| 216 |
|
oveq1 |
|- ( n = -u ( m + 1 ) -> ( n .x. X ) = ( -u ( m + 1 ) .x. X ) ) |
| 217 |
216
|
breq1d |
|- ( n = -u ( m + 1 ) -> ( ( n .x. X ) .< Y <-> ( -u ( m + 1 ) .x. X ) .< Y ) ) |
| 218 |
|
oveq1 |
|- ( n = -u ( m + 1 ) -> ( n + 1 ) = ( -u ( m + 1 ) + 1 ) ) |
| 219 |
218
|
oveq1d |
|- ( n = -u ( m + 1 ) -> ( ( n + 1 ) .x. X ) = ( ( -u ( m + 1 ) + 1 ) .x. X ) ) |
| 220 |
219
|
breq2d |
|- ( n = -u ( m + 1 ) -> ( Y .<_ ( ( n + 1 ) .x. X ) <-> Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) ) |
| 221 |
217 220
|
anbi12d |
|- ( n = -u ( m + 1 ) -> ( ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) <-> ( ( -u ( m + 1 ) .x. X ) .< Y /\ Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) ) ) |
| 222 |
221
|
rspcev |
|- ( ( -u ( m + 1 ) e. ZZ /\ ( ( -u ( m + 1 ) .x. X ) .< Y /\ Y .<_ ( ( -u ( m + 1 ) + 1 ) .x. X ) ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 223 |
170 184 215 222
|
syl12anc |
|- ( ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) /\ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 224 |
1 4 3
|
tlt2 |
|- ( ( W e. Toset /\ ( ( m + 1 ) .x. X ) e. B /\ ( ( invg ` W ) ` Y ) e. B ) -> ( ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) \/ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) |
| 225 |
149 81 124 224
|
syl3anc |
|- ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) -> ( ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) \/ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) |
| 226 |
225
|
adantr |
|- ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) -> ( ( ( m + 1 ) .x. X ) .<_ ( ( invg ` W ) ` Y ) \/ ( ( invg ` W ) ` Y ) .< ( ( m + 1 ) .x. X ) ) ) |
| 227 |
168 223 226
|
mpjaodan |
|- ( ( ( ( ph /\ Y .< .0. ) /\ m e. NN0 ) /\ ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 228 |
6
|
adantr |
|- ( ( ph /\ Y .< .0. ) -> W e. oGrp ) |
| 229 |
7
|
adantr |
|- ( ( ph /\ Y .< .0. ) -> W e. Archi ) |
| 230 |
8
|
adantr |
|- ( ( ph /\ Y .< .0. ) -> X e. B ) |
| 231 |
123
|
adantr |
|- ( ( ph /\ Y .< .0. ) -> ( ( invg ` W ) ` Y ) e. B ) |
| 232 |
10
|
adantr |
|- ( ( ph /\ Y .< .0. ) -> .0. .< X ) |
| 233 |
134
|
breq1d |
|- ( ph -> ( ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< .0. <-> Y .< .0. ) ) |
| 234 |
233
|
biimpar |
|- ( ( ph /\ Y .< .0. ) -> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< .0. ) |
| 235 |
1 3 16 2
|
ogrpinv0lt |
|- ( ( W e. oGrp /\ ( ( invg ` W ) ` Y ) e. B ) -> ( .0. .< ( ( invg ` W ) ` Y ) <-> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< .0. ) ) |
| 236 |
6 123 235
|
syl2anc |
|- ( ph -> ( .0. .< ( ( invg ` W ) ` Y ) <-> ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< .0. ) ) |
| 237 |
236
|
biimpar |
|- ( ( ph /\ ( ( invg ` W ) ` ( ( invg ` W ) ` Y ) ) .< .0. ) -> .0. .< ( ( invg ` W ) ` Y ) ) |
| 238 |
234 237
|
syldan |
|- ( ( ph /\ Y .< .0. ) -> .0. .< ( ( invg ` W ) ` Y ) ) |
| 239 |
1 2 3 4 5 228 229 230 231 232 238
|
archirng |
|- ( ( ph /\ Y .< .0. ) -> E. m e. NN0 ( ( m .x. X ) .< ( ( invg ` W ) ` Y ) /\ ( ( invg ` W ) ` Y ) .<_ ( ( m + 1 ) .x. X ) ) ) |
| 240 |
227 239
|
r19.29a |
|- ( ( ph /\ Y .< .0. ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 241 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 242 |
6
|
adantr |
|- ( ( ph /\ .0. .< Y ) -> W e. oGrp ) |
| 243 |
7
|
adantr |
|- ( ( ph /\ .0. .< Y ) -> W e. Archi ) |
| 244 |
8
|
adantr |
|- ( ( ph /\ .0. .< Y ) -> X e. B ) |
| 245 |
9
|
adantr |
|- ( ( ph /\ .0. .< Y ) -> Y e. B ) |
| 246 |
10
|
adantr |
|- ( ( ph /\ .0. .< Y ) -> .0. .< X ) |
| 247 |
|
simpr |
|- ( ( ph /\ .0. .< Y ) -> .0. .< Y ) |
| 248 |
1 2 3 4 5 242 243 244 245 246 247
|
archirng |
|- ( ( ph /\ .0. .< Y ) -> E. n e. NN0 ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 249 |
|
ssrexv |
|- ( NN0 C_ ZZ -> ( E. n e. NN0 ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) ) |
| 250 |
241 248 249
|
mpsyl |
|- ( ( ph /\ .0. .< Y ) -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |
| 251 |
1 3
|
tlt3 |
|- ( ( W e. Toset /\ Y e. B /\ .0. e. B ) -> ( Y = .0. \/ Y .< .0. \/ .0. .< Y ) ) |
| 252 |
33 9 37 251
|
syl3anc |
|- ( ph -> ( Y = .0. \/ Y .< .0. \/ .0. .< Y ) ) |
| 253 |
61 240 250 252
|
mpjao3dan |
|- ( ph -> E. n e. ZZ ( ( n .x. X ) .< Y /\ Y .<_ ( ( n + 1 ) .x. X ) ) ) |