Step |
Hyp |
Ref |
Expression |
1 |
|
nn0min.0 |
⊢ ( 𝑛 = 0 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
nn0min.1 |
⊢ ( 𝑛 = 𝑚 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
nn0min.2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
nn0min.3 |
⊢ ( 𝜑 → ¬ 𝜒 ) |
5 |
|
nn0min.4 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ 𝜓 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ∃ 𝑛 ∈ ℕ 𝜓 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
8 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑚 ¬ [ 𝑘 / 𝑛 ] 𝜓 |
11 |
9 10
|
nfim |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 𝑘 / 𝑛 ] 𝜓 ) |
12 |
|
dfsbcq2 |
⊢ ( 𝑘 = 1 → ( [ 𝑘 / 𝑛 ] 𝜓 ↔ [ 1 / 𝑛 ] 𝜓 ) ) |
13 |
12
|
notbid |
⊢ ( 𝑘 = 1 → ( ¬ [ 𝑘 / 𝑛 ] 𝜓 ↔ ¬ [ 1 / 𝑛 ] 𝜓 ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 𝑘 / 𝑛 ] 𝜓 ) ↔ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 1 / 𝑛 ] 𝜓 ) ) ) |
15 |
|
nfv |
⊢ Ⅎ 𝑛 𝜃 |
16 |
15 2
|
sbhypf |
⊢ ( 𝑘 = 𝑚 → ( [ 𝑘 / 𝑛 ] 𝜓 ↔ 𝜃 ) ) |
17 |
16
|
notbid |
⊢ ( 𝑘 = 𝑚 → ( ¬ [ 𝑘 / 𝑛 ] 𝜓 ↔ ¬ 𝜃 ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 𝑘 / 𝑛 ] 𝜓 ) ↔ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜃 ) ) ) |
19 |
|
nfv |
⊢ Ⅎ 𝑛 𝜏 |
20 |
19 3
|
sbhypf |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( [ 𝑘 / 𝑛 ] 𝜓 ↔ 𝜏 ) ) |
21 |
20
|
notbid |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ¬ [ 𝑘 / 𝑛 ] 𝜓 ↔ ¬ 𝜏 ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑘 = ( 𝑚 + 1 ) → ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 𝑘 / 𝑛 ] 𝜓 ) ↔ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜏 ) ) ) |
23 |
|
sbequ12r |
⊢ ( 𝑘 = 𝑛 → ( [ 𝑘 / 𝑛 ] 𝜓 ↔ 𝜓 ) ) |
24 |
23
|
notbid |
⊢ ( 𝑘 = 𝑛 → ( ¬ [ 𝑘 / 𝑛 ] 𝜓 ↔ ¬ 𝜓 ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 𝑘 / 𝑛 ] 𝜓 ) ↔ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜓 ) ) ) |
26 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
27 |
15 2
|
sbiev |
⊢ ( [ 𝑚 / 𝑛 ] 𝜓 ↔ 𝜃 ) |
28 |
|
nfv |
⊢ Ⅎ 𝑛 𝜒 |
29 |
28 1
|
sbhypf |
⊢ ( 𝑚 = 0 → ( [ 𝑚 / 𝑛 ] 𝜓 ↔ 𝜒 ) ) |
30 |
27 29
|
bitr3id |
⊢ ( 𝑚 = 0 → ( 𝜃 ↔ 𝜒 ) ) |
31 |
30
|
notbid |
⊢ ( 𝑚 = 0 → ( ¬ 𝜃 ↔ ¬ 𝜒 ) ) |
32 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 + 1 ) = ( 0 + 1 ) ) |
33 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
34 |
32 33
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( 𝑚 + 1 ) = 1 ) |
35 |
|
1nn |
⊢ 1 ∈ ℕ |
36 |
|
eleq1 |
⊢ ( ( 𝑚 + 1 ) = 1 → ( ( 𝑚 + 1 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
37 |
35 36
|
mpbiri |
⊢ ( ( 𝑚 + 1 ) = 1 → ( 𝑚 + 1 ) ∈ ℕ ) |
38 |
3
|
sbcieg |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ → ( [ ( 𝑚 + 1 ) / 𝑛 ] 𝜓 ↔ 𝜏 ) ) |
39 |
34 37 38
|
3syl |
⊢ ( 𝑚 = 0 → ( [ ( 𝑚 + 1 ) / 𝑛 ] 𝜓 ↔ 𝜏 ) ) |
40 |
34
|
sbceq1d |
⊢ ( 𝑚 = 0 → ( [ ( 𝑚 + 1 ) / 𝑛 ] 𝜓 ↔ [ 1 / 𝑛 ] 𝜓 ) ) |
41 |
39 40
|
bitr3d |
⊢ ( 𝑚 = 0 → ( 𝜏 ↔ [ 1 / 𝑛 ] 𝜓 ) ) |
42 |
41
|
notbid |
⊢ ( 𝑚 = 0 → ( ¬ 𝜏 ↔ ¬ [ 1 / 𝑛 ] 𝜓 ) ) |
43 |
31 42
|
imbi12d |
⊢ ( 𝑚 = 0 → ( ( ¬ 𝜃 → ¬ 𝜏 ) ↔ ( ¬ 𝜒 → ¬ [ 1 / 𝑛 ] 𝜓 ) ) ) |
44 |
43
|
rspcv |
⊢ ( 0 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) → ( ¬ 𝜒 → ¬ [ 1 / 𝑛 ] 𝜓 ) ) ) |
45 |
26 44
|
ax-mp |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) → ( ¬ 𝜒 → ¬ [ 1 / 𝑛 ] 𝜓 ) ) |
46 |
4 45
|
mpan9 |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ [ 1 / 𝑛 ] 𝜓 ) |
47 |
|
cbvralsvw |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ↔ ∀ 𝑘 ∈ ℕ0 [ 𝑘 / 𝑚 ] ( ¬ 𝜃 → ¬ 𝜏 ) ) |
48 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
49 |
|
sbequ12r |
⊢ ( 𝑘 = 𝑚 → ( [ 𝑘 / 𝑚 ] ( ¬ 𝜃 → ¬ 𝜏 ) ↔ ( ¬ 𝜃 → ¬ 𝜏 ) ) ) |
50 |
49
|
rspcv |
⊢ ( 𝑚 ∈ ℕ0 → ( ∀ 𝑘 ∈ ℕ0 [ 𝑘 / 𝑚 ] ( ¬ 𝜃 → ¬ 𝜏 ) → ( ¬ 𝜃 → ¬ 𝜏 ) ) ) |
51 |
48 50
|
syl |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ0 [ 𝑘 / 𝑚 ] ( ¬ 𝜃 → ¬ 𝜏 ) → ( ¬ 𝜃 → ¬ 𝜏 ) ) ) |
52 |
47 51
|
syl5bi |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) → ( ¬ 𝜃 → ¬ 𝜏 ) ) ) |
53 |
52
|
adantld |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ( ¬ 𝜃 → ¬ 𝜏 ) ) ) |
54 |
53
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜃 ) → ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜏 ) ) ) |
55 |
11 14 18 22 25 46 54
|
nnindf |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜓 ) ) |
56 |
55
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜓 ) |
57 |
|
r19.21v |
⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ 𝜓 ) ↔ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ∀ 𝑛 ∈ ℕ ¬ 𝜓 ) ) |
58 |
56 57
|
mpbi |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ∀ 𝑛 ∈ ℕ ¬ 𝜓 ) |
59 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ℕ ¬ 𝜓 ↔ ¬ ∃ 𝑛 ∈ ℕ 𝜓 ) |
60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) → ¬ ∃ 𝑛 ∈ ℕ 𝜓 ) |
61 |
6 60
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ) |
62 |
|
imnan |
⊢ ( ( ¬ 𝜃 → ¬ 𝜏 ) ↔ ¬ ( ¬ 𝜃 ∧ 𝜏 ) ) |
63 |
62
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( ¬ 𝜃 → ¬ 𝜏 ) ↔ ∀ 𝑚 ∈ ℕ0 ¬ ( ¬ 𝜃 ∧ 𝜏 ) ) |
64 |
61 63
|
sylnib |
⊢ ( 𝜑 → ¬ ∀ 𝑚 ∈ ℕ0 ¬ ( ¬ 𝜃 ∧ 𝜏 ) ) |
65 |
|
dfrex2 |
⊢ ( ∃ 𝑚 ∈ ℕ0 ( ¬ 𝜃 ∧ 𝜏 ) ↔ ¬ ∀ 𝑚 ∈ ℕ0 ¬ ( ¬ 𝜃 ∧ 𝜏 ) ) |
66 |
64 65
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ0 ( ¬ 𝜃 ∧ 𝜏 ) ) |