| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0min.0 |
|- ( n = 0 -> ( ps <-> ch ) ) |
| 2 |
|
nn0min.1 |
|- ( n = m -> ( ps <-> th ) ) |
| 3 |
|
nn0min.2 |
|- ( n = ( m + 1 ) -> ( ps <-> ta ) ) |
| 4 |
|
nn0min.3 |
|- ( ph -> -. ch ) |
| 5 |
|
nn0min.4 |
|- ( ph -> E. n e. NN ps ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> E. n e. NN ps ) |
| 7 |
|
nfv |
|- F/ m ph |
| 8 |
|
nfra1 |
|- F/ m A. m e. NN0 ( -. th -> -. ta ) |
| 9 |
7 8
|
nfan |
|- F/ m ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) |
| 10 |
|
nfv |
|- F/ m -. [ k / n ] ps |
| 11 |
9 10
|
nfim |
|- F/ m ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [ k / n ] ps ) |
| 12 |
|
dfsbcq2 |
|- ( k = 1 -> ( [ k / n ] ps <-> [. 1 / n ]. ps ) ) |
| 13 |
12
|
notbid |
|- ( k = 1 -> ( -. [ k / n ] ps <-> -. [. 1 / n ]. ps ) ) |
| 14 |
13
|
imbi2d |
|- ( k = 1 -> ( ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [ k / n ] ps ) <-> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [. 1 / n ]. ps ) ) ) |
| 15 |
|
nfv |
|- F/ n th |
| 16 |
15 2
|
sbhypf |
|- ( k = m -> ( [ k / n ] ps <-> th ) ) |
| 17 |
16
|
notbid |
|- ( k = m -> ( -. [ k / n ] ps <-> -. th ) ) |
| 18 |
17
|
imbi2d |
|- ( k = m -> ( ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [ k / n ] ps ) <-> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. th ) ) ) |
| 19 |
|
nfv |
|- F/ n ta |
| 20 |
19 3
|
sbhypf |
|- ( k = ( m + 1 ) -> ( [ k / n ] ps <-> ta ) ) |
| 21 |
20
|
notbid |
|- ( k = ( m + 1 ) -> ( -. [ k / n ] ps <-> -. ta ) ) |
| 22 |
21
|
imbi2d |
|- ( k = ( m + 1 ) -> ( ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [ k / n ] ps ) <-> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ta ) ) ) |
| 23 |
|
sbequ12r |
|- ( k = n -> ( [ k / n ] ps <-> ps ) ) |
| 24 |
23
|
notbid |
|- ( k = n -> ( -. [ k / n ] ps <-> -. ps ) ) |
| 25 |
24
|
imbi2d |
|- ( k = n -> ( ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [ k / n ] ps ) <-> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ps ) ) ) |
| 26 |
|
0nn0 |
|- 0 e. NN0 |
| 27 |
15 2
|
sbiev |
|- ( [ m / n ] ps <-> th ) |
| 28 |
|
nfv |
|- F/ n ch |
| 29 |
28 1
|
sbhypf |
|- ( m = 0 -> ( [ m / n ] ps <-> ch ) ) |
| 30 |
27 29
|
bitr3id |
|- ( m = 0 -> ( th <-> ch ) ) |
| 31 |
30
|
notbid |
|- ( m = 0 -> ( -. th <-> -. ch ) ) |
| 32 |
|
oveq1 |
|- ( m = 0 -> ( m + 1 ) = ( 0 + 1 ) ) |
| 33 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 34 |
32 33
|
eqtrdi |
|- ( m = 0 -> ( m + 1 ) = 1 ) |
| 35 |
|
1nn |
|- 1 e. NN |
| 36 |
|
eleq1 |
|- ( ( m + 1 ) = 1 -> ( ( m + 1 ) e. NN <-> 1 e. NN ) ) |
| 37 |
35 36
|
mpbiri |
|- ( ( m + 1 ) = 1 -> ( m + 1 ) e. NN ) |
| 38 |
3
|
sbcieg |
|- ( ( m + 1 ) e. NN -> ( [. ( m + 1 ) / n ]. ps <-> ta ) ) |
| 39 |
34 37 38
|
3syl |
|- ( m = 0 -> ( [. ( m + 1 ) / n ]. ps <-> ta ) ) |
| 40 |
34
|
sbceq1d |
|- ( m = 0 -> ( [. ( m + 1 ) / n ]. ps <-> [. 1 / n ]. ps ) ) |
| 41 |
39 40
|
bitr3d |
|- ( m = 0 -> ( ta <-> [. 1 / n ]. ps ) ) |
| 42 |
41
|
notbid |
|- ( m = 0 -> ( -. ta <-> -. [. 1 / n ]. ps ) ) |
| 43 |
31 42
|
imbi12d |
|- ( m = 0 -> ( ( -. th -> -. ta ) <-> ( -. ch -> -. [. 1 / n ]. ps ) ) ) |
| 44 |
43
|
rspcv |
|- ( 0 e. NN0 -> ( A. m e. NN0 ( -. th -> -. ta ) -> ( -. ch -> -. [. 1 / n ]. ps ) ) ) |
| 45 |
26 44
|
ax-mp |
|- ( A. m e. NN0 ( -. th -> -. ta ) -> ( -. ch -> -. [. 1 / n ]. ps ) ) |
| 46 |
4 45
|
mpan9 |
|- ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. [. 1 / n ]. ps ) |
| 47 |
|
cbvralsvw |
|- ( A. m e. NN0 ( -. th -> -. ta ) <-> A. k e. NN0 [ k / m ] ( -. th -> -. ta ) ) |
| 48 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 49 |
|
sbequ12r |
|- ( k = m -> ( [ k / m ] ( -. th -> -. ta ) <-> ( -. th -> -. ta ) ) ) |
| 50 |
49
|
rspcv |
|- ( m e. NN0 -> ( A. k e. NN0 [ k / m ] ( -. th -> -. ta ) -> ( -. th -> -. ta ) ) ) |
| 51 |
48 50
|
syl |
|- ( m e. NN -> ( A. k e. NN0 [ k / m ] ( -. th -> -. ta ) -> ( -. th -> -. ta ) ) ) |
| 52 |
47 51
|
biimtrid |
|- ( m e. NN -> ( A. m e. NN0 ( -. th -> -. ta ) -> ( -. th -> -. ta ) ) ) |
| 53 |
52
|
adantld |
|- ( m e. NN -> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> ( -. th -> -. ta ) ) ) |
| 54 |
53
|
a2d |
|- ( m e. NN -> ( ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. th ) -> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ta ) ) ) |
| 55 |
11 14 18 22 25 46 54
|
nnindf |
|- ( n e. NN -> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ps ) ) |
| 56 |
55
|
rgen |
|- A. n e. NN ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ps ) |
| 57 |
|
r19.21v |
|- ( A. n e. NN ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. ps ) <-> ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> A. n e. NN -. ps ) ) |
| 58 |
56 57
|
mpbi |
|- ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> A. n e. NN -. ps ) |
| 59 |
|
ralnex |
|- ( A. n e. NN -. ps <-> -. E. n e. NN ps ) |
| 60 |
58 59
|
sylib |
|- ( ( ph /\ A. m e. NN0 ( -. th -> -. ta ) ) -> -. E. n e. NN ps ) |
| 61 |
6 60
|
pm2.65da |
|- ( ph -> -. A. m e. NN0 ( -. th -> -. ta ) ) |
| 62 |
|
imnan |
|- ( ( -. th -> -. ta ) <-> -. ( -. th /\ ta ) ) |
| 63 |
62
|
ralbii |
|- ( A. m e. NN0 ( -. th -> -. ta ) <-> A. m e. NN0 -. ( -. th /\ ta ) ) |
| 64 |
61 63
|
sylnib |
|- ( ph -> -. A. m e. NN0 -. ( -. th /\ ta ) ) |
| 65 |
|
dfrex2 |
|- ( E. m e. NN0 ( -. th /\ ta ) <-> -. A. m e. NN0 -. ( -. th /\ ta ) ) |
| 66 |
64 65
|
sylibr |
|- ( ph -> E. m e. NN0 ( -. th /\ ta ) ) |