Metamath Proof Explorer


Theorem subne0nn

Description: A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023)

Ref Expression
Hypotheses subne0nn.1
|- ( ph -> M e. CC )
subne0nn.2
|- ( ph -> N e. CC )
subne0nn.3
|- ( ph -> ( M - N ) e. NN0 )
subne0nn.4
|- ( ph -> M =/= N )
Assertion subne0nn
|- ( ph -> ( M - N ) e. NN )

Proof

Step Hyp Ref Expression
1 subne0nn.1
 |-  ( ph -> M e. CC )
2 subne0nn.2
 |-  ( ph -> N e. CC )
3 subne0nn.3
 |-  ( ph -> ( M - N ) e. NN0 )
4 subne0nn.4
 |-  ( ph -> M =/= N )
5 1 2 4 subne0d
 |-  ( ph -> ( M - N ) =/= 0 )
6 elnnne0
 |-  ( ( M - N ) e. NN <-> ( ( M - N ) e. NN0 /\ ( M - N ) =/= 0 ) )
7 3 5 6 sylanbrc
 |-  ( ph -> ( M - N ) e. NN )