Description: A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subne0nn.1 | |- ( ph -> M e. CC ) |
|
| subne0nn.2 | |- ( ph -> N e. CC ) |
||
| subne0nn.3 | |- ( ph -> ( M - N ) e. NN0 ) |
||
| subne0nn.4 | |- ( ph -> M =/= N ) |
||
| Assertion | subne0nn | |- ( ph -> ( M - N ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subne0nn.1 | |- ( ph -> M e. CC ) |
|
| 2 | subne0nn.2 | |- ( ph -> N e. CC ) |
|
| 3 | subne0nn.3 | |- ( ph -> ( M - N ) e. NN0 ) |
|
| 4 | subne0nn.4 | |- ( ph -> M =/= N ) |
|
| 5 | 1 2 4 | subne0d | |- ( ph -> ( M - N ) =/= 0 ) |
| 6 | elnnne0 | |- ( ( M - N ) e. NN <-> ( ( M - N ) e. NN0 /\ ( M - N ) =/= 0 ) ) |
|
| 7 | 3 5 6 | sylanbrc | |- ( ph -> ( M - N ) e. NN ) |