Metamath Proof Explorer
Description: A nonnegative difference is positive if the two numbers are not equal.
(Contributed by Thierry Arnoux, 17-Dec-2023)
|
|
Ref |
Expression |
|
Hypotheses |
subne0nn.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
|
|
subne0nn.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
|
|
subne0nn.3 |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℕ0 ) |
|
|
subne0nn.4 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑁 ) |
|
Assertion |
subne0nn |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℕ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subne0nn.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
2 |
|
subne0nn.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
3 |
|
subne0nn.3 |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℕ0 ) |
4 |
|
subne0nn.4 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑁 ) |
5 |
1 2 4
|
subne0d |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ≠ 0 ) |
6 |
|
elnnne0 |
⊢ ( ( 𝑀 − 𝑁 ) ∈ ℕ ↔ ( ( 𝑀 − 𝑁 ) ∈ ℕ0 ∧ ( 𝑀 − 𝑁 ) ≠ 0 ) ) |
7 |
3 5 6
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℕ ) |