Metamath Proof Explorer
Description: A nonnegative difference is positive if the two numbers are not equal.
(Contributed by Thierry Arnoux, 17-Dec-2023)
|
|
Ref |
Expression |
|
Hypotheses |
subne0nn.1 |
|
|
|
subne0nn.2 |
|
|
|
subne0nn.3 |
|
|
|
subne0nn.4 |
|
|
Assertion |
subne0nn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subne0nn.1 |
|
| 2 |
|
subne0nn.2 |
|
| 3 |
|
subne0nn.3 |
|
| 4 |
|
subne0nn.4 |
|
| 5 |
1 2 4
|
subne0d |
|
| 6 |
|
elnnne0 |
|
| 7 |
3 5 6
|
sylanbrc |
|