Metamath Proof Explorer


Theorem subne0nn

Description: A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023)

Ref Expression
Hypotheses subne0nn.1 φM
subne0nn.2 φN
subne0nn.3 φMN0
subne0nn.4 φMN
Assertion subne0nn φMN

Proof

Step Hyp Ref Expression
1 subne0nn.1 φM
2 subne0nn.2 φN
3 subne0nn.3 φMN0
4 subne0nn.4 φMN
5 1 2 4 subne0d φMN0
6 elnnne0 MNMN0MN0
7 3 5 6 sylanbrc φMN