| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltesubnnd.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
ltesubnnd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
1
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 4 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 5 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 6 |
3 4 5
|
addsubd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑁 ) = ( ( 𝑀 − 𝑁 ) + 1 ) ) |
| 7 |
1
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 8 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 9 |
7 8
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) < 𝑀 ) |
| 10 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 |
1 10
|
zsubcld |
⊢ ( 𝜑 → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 12 |
|
zltp1le |
⊢ ( ( ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 − 𝑁 ) < 𝑀 ↔ ( ( 𝑀 − 𝑁 ) + 1 ) ≤ 𝑀 ) ) |
| 13 |
11 1 12
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑁 ) < 𝑀 ↔ ( ( 𝑀 − 𝑁 ) + 1 ) ≤ 𝑀 ) ) |
| 14 |
9 13
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 − 𝑁 ) + 1 ) ≤ 𝑀 ) |
| 15 |
6 14
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 𝑁 ) ≤ 𝑀 ) |