| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltesubnnd.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
ltesubnnd.2 |
|- ( ph -> N e. NN ) |
| 3 |
1
|
zcnd |
|- ( ph -> M e. CC ) |
| 4 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 5 |
2
|
nncnd |
|- ( ph -> N e. CC ) |
| 6 |
3 4 5
|
addsubd |
|- ( ph -> ( ( M + 1 ) - N ) = ( ( M - N ) + 1 ) ) |
| 7 |
1
|
zred |
|- ( ph -> M e. RR ) |
| 8 |
2
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 9 |
7 8
|
ltsubrpd |
|- ( ph -> ( M - N ) < M ) |
| 10 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 11 |
1 10
|
zsubcld |
|- ( ph -> ( M - N ) e. ZZ ) |
| 12 |
|
zltp1le |
|- ( ( ( M - N ) e. ZZ /\ M e. ZZ ) -> ( ( M - N ) < M <-> ( ( M - N ) + 1 ) <_ M ) ) |
| 13 |
11 1 12
|
syl2anc |
|- ( ph -> ( ( M - N ) < M <-> ( ( M - N ) + 1 ) <_ M ) ) |
| 14 |
9 13
|
mpbid |
|- ( ph -> ( ( M - N ) + 1 ) <_ M ) |
| 15 |
6 14
|
eqbrtrd |
|- ( ph -> ( ( M + 1 ) - N ) <_ M ) |