Description: Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to ( oppGM ) . (Contributed by Thierry Arnoux, 13-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | df-omnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | comnd | |
|
1 | vg | |
|
2 | cmnd | |
|
3 | cbs | |
|
4 | 1 | cv | |
5 | 4 3 | cfv | |
6 | vv | |
|
7 | cplusg | |
|
8 | 4 7 | cfv | |
9 | vp | |
|
10 | cple | |
|
11 | 4 10 | cfv | |
12 | vl | |
|
13 | ctos | |
|
14 | 4 13 | wcel | |
15 | va | |
|
16 | 6 | cv | |
17 | vb | |
|
18 | vc | |
|
19 | 15 | cv | |
20 | 12 | cv | |
21 | 17 | cv | |
22 | 19 21 20 | wbr | |
23 | 9 | cv | |
24 | 18 | cv | |
25 | 19 24 23 | co | |
26 | 21 24 23 | co | |
27 | 25 26 20 | wbr | |
28 | 22 27 | wi | |
29 | 28 18 16 | wral | |
30 | 29 17 16 | wral | |
31 | 30 15 16 | wral | |
32 | 14 31 | wa | |
33 | 32 12 11 | wsbc | |
34 | 33 9 8 | wsbc | |
35 | 34 6 5 | wsbc | |
36 | 35 1 2 | crab | |
37 | 0 36 | wceq | |