Metamath Proof Explorer


Definition df-omnd

Description: Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to ( oppGM ) . (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Assertion df-omnd oMnd=gMnd|[˙Baseg/v]˙[˙+g/p]˙[˙g/l]˙gTosetavbvcvalbapclbpc

Detailed syntax breakdown

Step Hyp Ref Expression
0 comnd classoMnd
1 vg setvarg
2 cmnd classMnd
3 cbs classBase
4 1 cv setvarg
5 4 3 cfv classBaseg
6 vv setvarv
7 cplusg class+𝑔
8 4 7 cfv class+g
9 vp setvarp
10 cple classle
11 4 10 cfv classg
12 vl setvarl
13 ctos classToset
14 4 13 wcel wffgToset
15 va setvara
16 6 cv setvarv
17 vb setvarb
18 vc setvarc
19 15 cv setvara
20 12 cv setvarl
21 17 cv setvarb
22 19 21 20 wbr wffalb
23 9 cv setvarp
24 18 cv setvarc
25 19 24 23 co classapc
26 21 24 23 co classbpc
27 25 26 20 wbr wffapclbpc
28 22 27 wi wffalbapclbpc
29 28 18 16 wral wffcvalbapclbpc
30 29 17 16 wral wffbvcvalbapclbpc
31 30 15 16 wral wffavbvcvalbapclbpc
32 14 31 wa wffgTosetavbvcvalbapclbpc
33 32 12 11 wsbc wff[˙g/l]˙gTosetavbvcvalbapclbpc
34 33 9 8 wsbc wff[˙+g/p]˙[˙g/l]˙gTosetavbvcvalbapclbpc
35 34 6 5 wsbc wff[˙Baseg/v]˙[˙+g/p]˙[˙g/l]˙gTosetavbvcvalbapclbpc
36 35 1 2 crab classgMnd|[˙Baseg/v]˙[˙+g/p]˙[˙g/l]˙gTosetavbvcvalbapclbpc
37 0 36 wceq wffoMnd=gMnd|[˙Baseg/v]˙[˙+g/p]˙[˙g/l]˙gTosetavbvcvalbapclbpc